2025 ESMO SARCOMA AND RARE CANCERS

Annual Congress

TREATMENT DISCONTINUATION OUTCOMES IN PAEDIATRIC PATIENTS WITH TRK FUSION SARCOMAS TREATED WITH LAROTRECTINIB

Claudia Blattmann¹, Leo Mascarenhas², Daniel Orbach³, Noah Federman⁴, Steven G. DuBois⁵, Catherine M. Albert⁶, Alberto Pappo⁷, Christian Michel Zwaan⁸, Domnita-Ileana Burcoveanu⁹, Natascha Neu¹⁰, Esther De La Cuesta¹¹, Theodore W. Laetsch¹², Cornelis M. van Tilburg¹³

¹Olgahospital, Stuttgart, Germany; ²Cedars-Sinai Medical Center, Los Angeles, CA, USA; ³SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, and University PSL, Paris, France; ⁴David Geffen School of Medicine, University of California, Los Angeles, CA, USA; ⁵Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; ⁶Seattle Children's Hospital, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; ⁷Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA; ⁸Prinses Maxima Centrum, Utrecht, The Netherlands and Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands; ⁹Bayer HealthCare Pharmaceuticals, Inc., Basel, Switzerland; ¹⁰Chrestos GmbH, Essen, Germany; ¹¹Bayer HealthCare Pharmaceuticals, Inc., Whippany, NJ, USA; ¹²The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA; ¹³Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Research Center (DKFZ), Heidelberg, Germany

DECLARATION OF INTERESTS

Claudia Blattmann

Nothing to report.

2025 ESMO SARCOMA AND RARE CANCERS

Claudia Blattmann

LAROTRECTINIB IS HIGHLY ACTIVE AGAINST TRK FUSION CANCER

- NTRK gene fusions are oncogenic drivers in multiple tumour types, including infantile fibrosarcoma and other sarcomas in paediatric patients¹
 - There is a high prevalence of NTRK gene fusions in infantile fibrosarcoma (~70%)¹
- Larotrectinib is a first-in-class, highly selective TRK inhibitor approved for tumour-agnostic use in patients with TRK fusion cancer^{2,3}

We report outcomes in paediatric patients with TRK fusion sarcomas who could electively discontinue larotrectinib (drug holiday) while in response

1. O'Haire S et al. Sci Rep. 2023;13(1):4116. 2. Bayer. VITRAKVI US PI. 2023. Accessed 5 February 2025. 3. Bayer. VITRAKVI SmPC. 2023. Accessed 5 February 2025.

2025 ESMO SARCOMA AND RARE CANCERS

Claudia Blattmann

STUDY DESIGN

Dose: 100 mg/m² BID (max 100 mg BID)[†]

[†]Patients in the phase 1 dose-escalation cohort received 9.6–120 mg/m² BID based on target dosing calculation tables per protocol. BID, twice daily; RECIST, Response Evaluation Criteria in Solid Tumors.

2025 ESMO SARCOMA AND RARE CANCERS

Claudia Blattmann

BASELINE CHARACTERISTICS

Characteristics	N=47	Characteristics	N=47
Age, median (range), years	0.9 (0–13)	Prior therapies, n (%)§	
Sex, n (%)		Surgery	13 (28)
Male	25 (53)	Radiotherapy	1 (2)
Female	22 (47)	Systemic therapy	26 (55)
ECOG performance status n (%)	X 7	Prior systemic therapies, median (range) [∥]	1 (0–3)
	30 (83)	Number of prior systemic therapies, n (%) \parallel	
0	J9 (0J)	0	21 (45)
1	6 (13)	1	16 (34)
2	2 (4)	2	8 (17)
Tumour histology, n (%)		≥3	2 (4)
Infantile fibrosarcoma	30 (64)	Best response to prior systemic therapy, n (%)	
Other soft tissue sarcoma [†]	17 (36)	CR	1 (2)
NTRK gene fusion n (%)‡		PR	4 (9)
	17 (26)	SD	13 (28)
NIRKI	17 (30)	PD	4 (9)
NTRK2	0	Other [¶]	4 (9)
NTRK3	30 (64)	No prior systemic therapy	21 (45)

[†]Includes spindle cell sarcoma (n=9), inflammatory myofibroblastic tumour (n=3) and one each of myopericytoma, lipofibromatosis, lipofibromatosis and not otherwise specified. [‡]*NTRK* gene fusions were identified by next-generation sequencing (n=26), fluorescence in situ hybridisation (n=11), polymerase chain reaction (n=8), NanoString (n=1) and chromosome microarray (n=1). [§] Patients may be counted in more than 1 row. ^{II}Number of previous systemic regimens (excluding previous radioactive iodine) in the metastatic and/or unresectable setting. [¶]Other includes unknown and not evaluable. CR, complete response; ECOG, Eastern Cooperative Oncology Group; PD, progressive disease; PR, partial response; SD, stable disease.

2025 ESMO SARCOMA AND RARE CANCERS

Claudia Blattmann

PAEDIATRIC PATIENTS WITH TRK FUSION SARCOMAS WHO ENTERED THE WAIT-AND-SEE ANALYSIS (N=47)

- By the data cut-off, a total of 30 (64%) patients with IFS and 17 (36%) with other STS discontinued larotrectinib and entered a wait-and-see period in the absence of on-treatment progression
- Twenty-five (53%) patients discontinued after achieving CR (including 10 surgical patients with pCR), 18 (38%) with PR and 4 (9%) with SD
- Twenty-one (45%) patients electively discontinued larotrectinib after surgery[†] and 26 (55%) did not have surgery

[†]Surgery took place before or ≤1 week after discontinuation.

CR, complete response; IFS, infantile fibrosarcoma; NA, not applicable; pCR, pathologic complete response; PD, progressive disease; PR, partial response; SD, stable disease; STS, soft tissue sarcoma.

2025 ESMO SARCOMA AND RARE CANCERS

Claudia Blattmann

TIME TO DISCONTINUATION AND PROGRESSION (N=47)

- Median time to discontinuing larotrectinib was 15 months (range 3–65)
- Sixteen (34%) patients who discontinued larotrectinib had subsequent progression

Post response before or at the time of		ę	Non ourricol	Total			
stopping larotrectinib, n	pCR [‡] (n=10)	Unknown (n=1)	R0 (n=1)	R1 (n=8)	R2 (n=1)	(n=26)	(N=47)
Median time to stopping larotrectinib, months (range)	7 (5–22)	3 (3–3)	22 (22–22)	8 (4–26)	6 (6–6)	20 (11–65)	15 (3–65)
Progressed, n	2	0	0	1	1	12	16
Median time from stopping larotrectinib to progression, months (range)§	NR (0–76)	NA	NA	NR (1–78)	1 (1–1)	NR (1–59)	NR (0–78)
Median duration of follow-up, months	49	50	36	39	NR	41	41

[†]Surgery took place before or <1 week after discontinuation. [‡]pCR was defined as no pathologic evidence of tumour, negative surgical margins and no other evidence of disease. [§] Kaplan–Meier estimate.

NA, not applicable; NR, not reached; pCR, pathologic complete response; R0, no residual tumour; R1, microscopic residual tumour; R2, macroscopic residual tumour.

2025 ESMO SARCOMA AND RARE CANCERS

Claudia Blattmann

TIME FROM DISCONTINUATION TO PROGRESSION BY SURGERY STATUS AND HISTOLOGY

- Four patients with surgery[†] and 12 without surgery experienced disease progression
 - The median time from discontinuation to progression was not reached in both the surgical and non-surgical groups
- Ten patients with IFS and 6 with other STS had disease progression
 - The median time from discontinuation to progression was not reached in both the IFS and other STS groups

[↑]Surgery took place before or ≤1 week after discontinuation. IFS, infantile fibrosarcoma; STS, soft tissue sarcoma.

2025 ESMO SARCOMA AND RARE CANCERS

Claudia Blattmann

BEST RESPONSE AFTER PROGRESSION AND RESUMPTION OF TREATMENT

Best response before or at the time of stopping - larotrectinib, n	Surgical (n=21) [†]					Non curgical	Total
	pCR‡ (n=10)	Unknown (n=1)	R0 (n=1)	R1 (n=8)	R2 (n=1)	(n=26)	(N=47)
Progressed and resumed treatment, n	2	0	0	1	1	12	16
Best response after resumption	1 CR, 1 PR	-	-	1 PR	1 SD	4 CR, 4 PR, 3 SD, 1 undefined	5 CR, 6 PR,§ 4 SD, 1 undefined

- In the 16 (34%) patients who discontinued larotrectinib and had subsequent progression, the median time from discontinuing larotrectinib to progression was 3 months (range 1–35)
- All 16 patients resumed larotrectinib after documented progression: 11 had response to re-treatment, [§] 4 had SD, and 1 restarted treatment and then had surgery, so response was undefined

Best response before	Best response after resumption					
or at the time of stopping larotrectinib	CR	PR	SD	Undefined		
CR	4	2	1	0		
pCR	1	0	0	0		
PR	0	4	3	1		

All 47 patients were alive at data cut-off

[†]Surgery took place before or ≤1 week after discontinuation. [‡]pCR is defined as no pathologic evidence of tumour, negative surgical margins and no other evidence of disease. [§] Two patients with PR pending confirmation. CR, complete response; pCR, pathologic complete response; PC, pathologic complete resp

2025 ESMO SARCOMA AND RARE CANCERS

Claudia Blattmann

ADVERSE EVENTS IN >20% OF PATIENTS (N=47)

[†]Includes hold/reductions and withdrawals.

Patients (%)

AE, adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase; SAE, serious adverse event; TRAE, treatment-related adverse event.

2025 ESMO SARCOMA AND RARE CANCERS

Claudia Blattmann

CONCLUSIONS

- Larotrectinib demonstrated robust, durable responses and favourable safety in paediatric patients with TRK fusion sarcomas who had a drug holiday
 - * Approximately one-third of the patients who electively discontinued larotrectinib had disease progression
 - Fifteen of the 16 (94%) patients who progressed or relapsed achieved disease control when larotrectinib was resumed, with 69% (11 of 16) having an objective response
- These data suggest that patients with completely resected localized tumors can discontinue larotrectinib
 - After response to larotrectinib, surgical local control should be strongly considered as soon as feasible without significant morbidity
 - Elective discontinuation with close monitoring after prolonged disease response, even without surgical local control, could
 potentially be considered in some patients
- A recent publication of this study in the *Journal of Clinical Oncology* (Mascarenhas L, et al. 2025. PMID: 39869835) includes additional data on paediatric patients with TRK fusion sarcomas

Claudia Blattmann

ACKNOWLEDGMENTS

- . We thank all investigators involved in these studies
- . We thank the patients and their families, many of whom travelled long distances to participate in these studies
- Medical writing assistance was provided by Anastasija Pesevska, PharmD, and editorial assistance was provided by Travis Taylor, BA, both of Scion (a division of Prime, London, UK), supported by Bayer Healthcare Pharmaceuticals, Inc
- These studies were funded by Bayer Healthcare Pharmaceuticals, Inc

2025 ESMO SARCOMA AND RARE CANCERS

Claudia Blattmann