A Pooled Analysis of the PULSAR and PHOTON Trials Through 96 Weeks: Minimal Impact of Aflibercept 8 mg and 2 mg on Intraocular Pressure Changes

Richard Gale,¹ Anat Loewenstein,² Diana V. Do,³ Paolo Lanzetta,⁴ Sergio Leal,⁵ Alyson J. Berliner,⁶ Karen W. Chu,⁶ Mark R. Barakat,⁷ Ghassan Ghorayeb,⁸ Michael W. Stewart,⁹ Xin Zhang,⁵ April McCullough,⁶ Claudia Tueckmantel,¹⁰ Peter Morgan-Warren,⁵ Lynne Brunck,⁵ Ajla Dupljak,⁶ Maggie Hymowitz,⁶ Anna Portnoy,⁶ Ursula M. Schmidt-Ott,¹¹ on behalf of the PHOTON and PULSAR study investigators

¹University of York and York and Scarborough Teaching Hospital NHS Foundation Trust, York, UK;

²Ophthalmology Division, Tel Aviv Medical Center, affiliated with Faculty of Medicine Tel Aviv University, Tel Aviv, Israel

³Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA; ⁴Department of Medicine – Ophthalmology, University of Udine, and Istituto Europeo di Microchirurgia Oculare – IEMO, Udine-Milan, Italy; ⁵Bayer Consumer Care AG, Basel, Switzerland; ⁶Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA;

⁷Retina Macula Institute of Arizona, Spectra Eye Institute, Univ of Arizona College of Medicine, Phoenix, Scottsdale, AZ, USA;

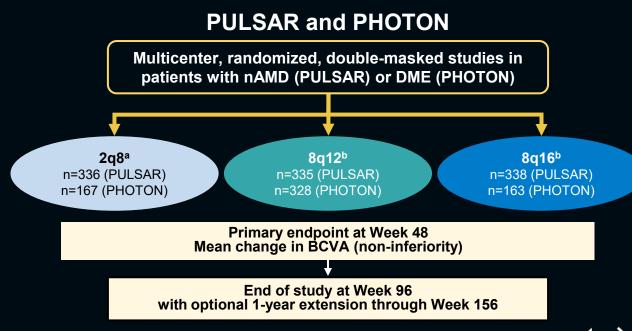
⁸Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, United States;

⁹Mayo Clinic College of Medicine and Department of Ophthalmology, Mayo Clinic, Jacksonville, FL, USA;

¹⁰Bayer AG, Wuppertal, Germany; ¹¹Bayer AG, Berlin, Germany

Disclosures

- Richard Gale is a consultant for AbbVie, Allergan, Apellis, Bayer, Biogen, Boehringer Ingelheim, Novartis, Ocular Therapeutix, Roche, and Santen; receives funding from Bayer, Novartis, and Roche; and has served as a consultant for Allergan, Apellis, Bayer, Novartis, and Roche
 - AL is a consultant for AbbVie, Allergan, Apellis, Bayer, Biogen, Boehringer Ingelheim, Novartis, Ocular Therapeutix, Roche, and Santen; receives funding from Bayer, Novartis, and Roche. DVD is a consultant for AbbVie, Allergan, Apellis, Bayer, Biogen, Boehringer Ingelheim, Novartis, Ocular Therapeutix, Roche, and Santen; receives funding from Bayer, Novartis, and Roche. PL is a consultant for Aerie, Allergan, Apellis, Bausch & Lomb, Bayer, Biogen, Boehringer Ingelheim, Genentech, I-Care, Novartis, Outlook Therapeutics, and Roche. SL, XZ, PMW, and LB are employees of Bayer Consumer Care AG. AJB, AM, AD, MH, and AP are employees of Regeneron Pharmaceuticals, Inc. KWC is a former employee of Regeneron Pharmaceuticals, Inc. MRB is a consultant or in research for AbbVie Inc, Adverum Biotech, Alcon, Alimera, Allegro, Allergan, Annexon Biosciences, Apellis, Arctic Vision, Astellas, Bausch and Lomb, Biocryst, Biogen, Boehringer Ingelheim, CalciMedica, Celltrion, Cencora, Clearside Biomedical, Coherus Biosciences, EyeBio, EyePoint Pharma, Gemini Therapeutics, Genentech, Gyroscope Therapeutics, Harrow, Janssen, Kanghong/Vanotech, Kodiak Sciences, Novartis, NeuBase, Neurotech, Ocular Therapeutics, Opthea, Outlook Therapeutics, Oxular, Oxurion, Palatin Technologies, Perfuse, Regeneron Pharmaceuticals, Inc., RegenxBio, ReNeuron, RevOpsis Therapeutics, Ribomic, Roche, Stealth Biotherapeutics, and Unity Biotechnology; and holds stock in NeuBase and Oxurion; has stock options with RevOpsis Therapeutics. GG has no financial disclosures to report. MWS is a consultant for Alkahest, Bayer, Biogen, Revena, Regeneron Pharmaceuticals, Inc., and Bayer; receives funding from Allergan, Kanghong, and Regeneron Pharmaceuticals, Inc., CT and USO are employees of Bayer AG
- The PHOTON studies was sponsored by Regeneron Pharmaceuticals, Inc. (Tarrytown, NY), and the PULSAR study was funded by Bayer AG (Leverkusen, Germany). The sponsors participated in the design and conduct of the studies, analysis of the data, and preparation of this presentation
- Study disclosures: These studies include research conducted on human patients; Institutional Review Board approval was obtained prior to study initiation
- The pooled IOP safety analysis of intravitreal aflibercept 8 mg PHOTON and PULSAR was previously presented at the ARVO Annual Meeting, May 4–8, 2025, Salt Lake City, UT, USA
- Medical writing support, under direction of the authors, was provided by ApotheCom and funded by Bayer Consumer Care AG, Basel, Switzerland, in accordance with Good Publication Practice (GPP) guidelines (*Ann Intern Med* 2022;175:1298–1304)


Objective and Methods

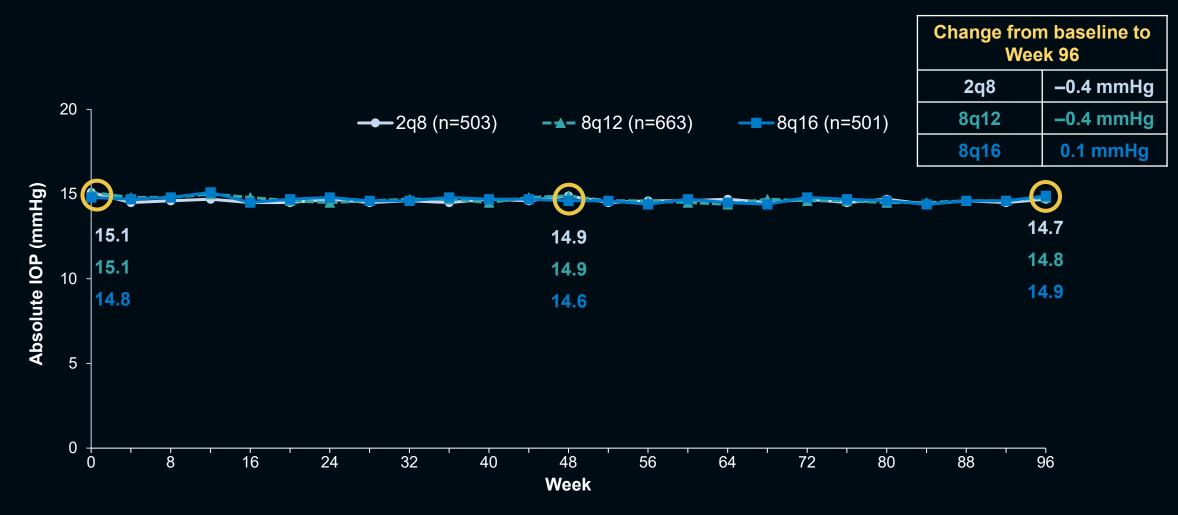
Objective

This analysis explored the potential effect of a higher injection volume with aflibercept 8 mg (70 uL) vs aflibercept 2 mg (50 uL) on IOP in the PULSAR and PHOTON trials through 96 weeks

Methods

- Data were pooled through Week 96 and IOP was measured at all visits as follows:
 - In PULSAR, measured pre-injection (bilaterally) and approximately 30 to 60 minutes after administration of study intervention (study eye only)
 - In **PHOTON**, measured pre-injection (bilaterally) by the masked investigator (or designee) and approximately 30 minutes after administration

Sample Size, Baseline Demographics, and Aflibercept Exposure in the Pooled Safety Analysis


Overall, safety data for 1667 patients were evaluated

	Aflibercept 2 mg pooled	8q12	8q16	Aflibercept 8 mg pooled ^a
PULSAR, n	167	328	163	491
PHOTON, n	336	335	338	673
Total, n	503	663	501	1164

	Aflibercept 2 mg pooled (n=503)	Aflibercept 8 mg pooled ^a (n=1164)
Baseline demographics		
Female, n (%)	263 (52.3)	544 (46.7)
Age group, n (%) <65 years ≥65–<75 years ≥75 years White, n (%) Hispanic or Latino, n (%)	137 (27.2) 180 (35.8) 186 (37.0) 361 (71.8) 43 (8.5)	346 (29.7) 425 (36.5) 393 (33.8) 875 (75.2) 104 (8.9)
Aflibercept exposure	40 (0.0)	10+ (0.5)
Total number of injections	6159	9762

Absolute Pre-injection IOP Through Week 96

The mean pre-injection IOP values were comparable across treatment groups, with no sustained increase in IOP through Week 96

Safety analysis set through Week 96.

Pre-injection IOP in the Study Eye Through Week 96

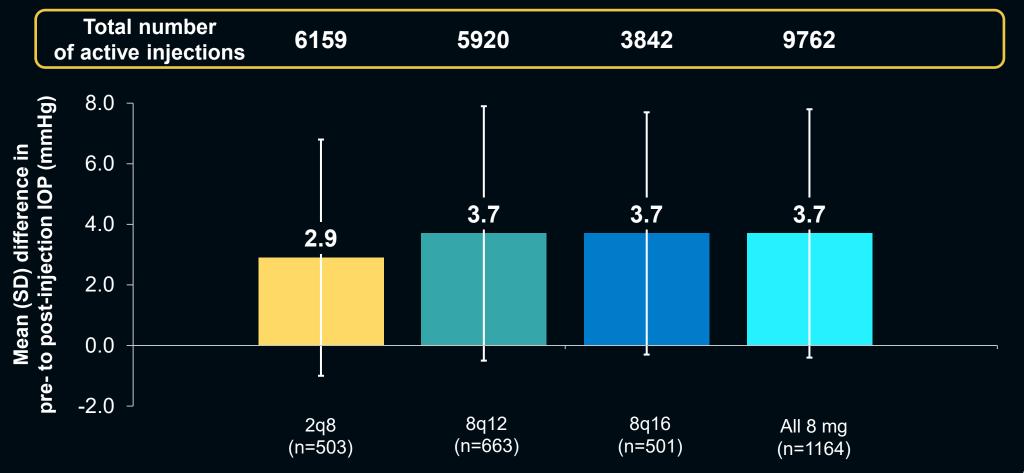
	2q8	8q12	8q16	All 8 mg
Safety analysis set, n	503	663	501	1164
Pre-injection IOP ≥35 mmHg, n (%)ª	1 (0.2)	2 (0.3)	0	2 (0.2)

The proportion of patients with pre-injection IOP ≥35 mmHg at any visit through Week 96 was very low and comparable across the treatment groups

Post-injection IOP in the Study Eye Through Week 96

	2q8	8q12	8q16	All 8 mg
Safety analysis set, n	503	663	501	1164
Post-injection IOP ≥35 mmHg, n (%)ª	3 (0.6)	3 (0.5)	1 (0.2)	4 (0.3)

The proportion of patients with post-injection IOP ≥35 mmHg at any visit through Week 96 was very low and comparable across the treatment groups



Anterior Chamber Paracentesis in the Study Eye Through Week 96

	2q8	8q12	8q16	All 8 mg
Number of patients requiring anterior chamber paracentesis/n (%)	0/503 (0)	4/663 (0.6)	1/501 (0.2)	5/1164 (0.4)
Number of events requiring anterior chamber paracentesis/number of active study eye injections (%)	0/6159 (0)	8/5920 (0.1)	1/3842 (<0.1)	9/9762 (<0.1)

The rates of anterior chamber paracentesis procedures performed through Week 96 were comparable across the treatment groups

Difference in Pre-injection to Post-injection IOP in Study Eyes at Active Dosing Visits Through Week 96

The LS mean (95% CI) difference in pre- to post-injection IOP was comparable for patients in the combined All 8 mg and 2 mg groups with a difference of 0.83 (0.67, 0.99) mmHg

IOP-related TEAEs Through Week 96

	2q8	8q12	8q16	All 8 mg
Safety analysis set, n	503	663	501	1164
Patients with ≥1 TEAE, n (%)	22 (4.4)	31 (4.7)	22 (4.4)	53 (4.6)
Angle closure glaucoma	1 (0.2)	1 (0.2)	1 (0.2)	2 (0.2)
Borderline glaucoma	0	1 (0.2)	1 (0.2)	2 (0.2)
Glaucoma	1 (0.2)	1 (0.2)	5 (1.0)	6 (0.5)
Intraocular pressure increased	17 (3.4)	21 (3.2)	13 (2.6)	34 (2.9)
Ocular hypertension	3 (0.6)	8 (1.2)	4 (0.8)	12 (1.0)
Open angle glaucoma	1 (0.2)	1 (0.2)	0	1 (<0.1)

Conclusions

Pre-injection and Post-injection IOP

• Pre-injection IOP values remained consistent over the 96-week period

• The proportion of patients with **pre-injection IOP** and the proportion of patients with **post-injection IOP ≥35 mmHg** at any visit **through Week 96 was low** and **comparable** across the treatment groups

Anterior chamber paracentesis

 The rate of anterior chamber paracentesis was comparable across treatment groups and performed following <0.1% of injections administered in the aflibercept 8 mg group

Pre-injection to post-injection IOP differences

The difference in LS mean change in pre-injection to post-injection IOP was
 <1 mmHg between aflibercept 8 mg and 2 mg, and no clinically relevant differences were observed

TEAEs

 The rate of IOP-related TEAEs such as "glaucoma", "IOP increased", and "ocular hypertension" were comparable across treatment groups