

A Post Hoc Analysis of Intravitreal Aflibercept–Treated nAMD Patients from ARIES & ALTAIR: Predicting Patient-Individualized Treatment Interval for Aflibercept Treat-and-Extend Therapy Regimen by Adapting AI Algorithms Trained on Pro Re Nata Data

Matthias Gutfleisch, MD^{1,2}, Sökmen Aydin^{2,3}, Ratko Petrovic³, Alexander Loktyushin³, Paula Scholz, MD⁴, Hossam Youssef⁵, Ulrike Bauer-Steinhusen⁴, Kristian T. Johnson, MD⁶, Britta Heimes-Bussmann, MD^{1,2}, Kai Rothaus^{1,2}, Albrecht Lommatzsch, MD^{1,2,7,8}

¹Department of Ophthalmology, St. Franziskus-Hospital, Münster, Germany; ²M3 Macula Monitor Münster GmbH & Co KG, Münster, Germany; ³deepeye Medical GmbH, Munich, Germany; ⁴Bayer Vital GmbH, Leverkusen, Germany; ⁵Bayer Middle East FZE, Dubai, United Arab Emirates; ⁶Bayer US LLC, Cambridge, MA, USA; ⁷Department of Ophthalmology, University Duisburg-Essen, Essen, Germany; ⁸Achim Wessing Institute of Ophthalmic Diagnostic, University Duisburg-Essen, Essen, Germany

23rd Euretina Congress, Amsterdam, September 5-8, 2023

Disclosures

Disclosures: Presenting author

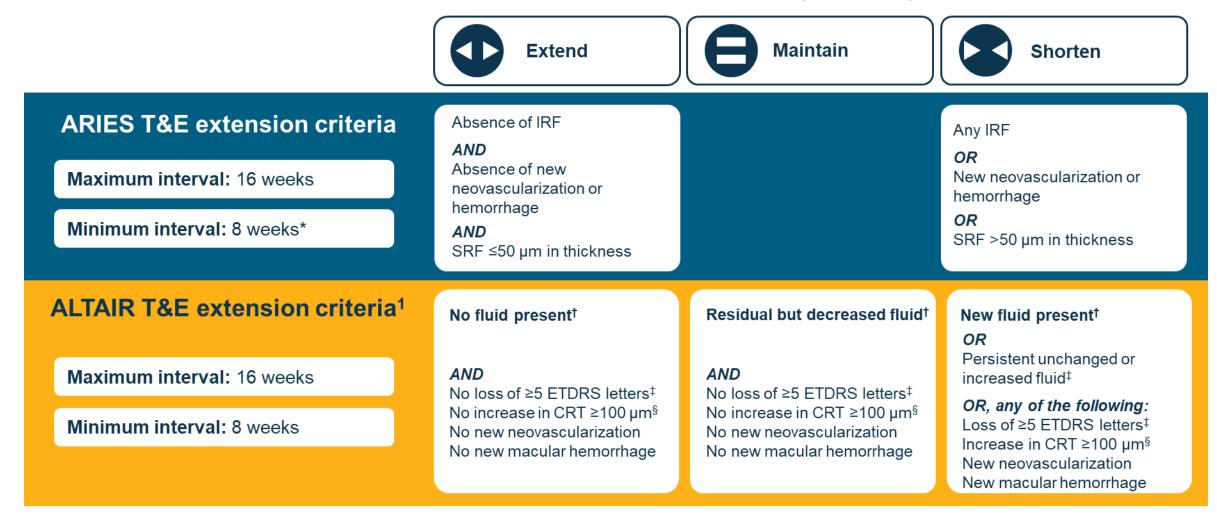
Matthias Gutfleisch: Study participation: Amgen, Apellis, Iveric Bio, Kodiak, Neurotech, Novartis, Regeneron, Roche; Shareholder: deepeye Medical GmbH; Travel support: DORC; Consultant: Bayer.

Disclosures: Co-author group

PS: Employee: Bayer; **HY:** Employee: Bayer; **UBS:** Employee: Bayer; **KTJ:** Employee: Bayer; **KR:** No financial disclosures; **BHB:** Study participation: Roche, Amgen, Iveric Bio, Kodiak, Novartis, Novo Nordisk; **ALom:** Study participation & consulting: Roche, Iveric Bio, Kodiak, Amgen, Novartis, Boehringer Ingelheim, Apellis, Ohthea, Alexion; Sharholder deepeye Medical GmbH **RP:** Employee: deepeye Medical GmbH;

ALok: Employee: deepeye Medical GmbH; SA: No financial disclosures

Purpose

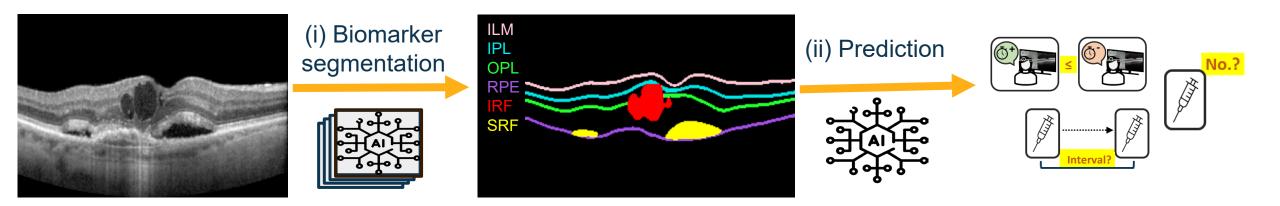

- Prediction of potential treatment need/expected therapy response and neovascular age-related macular degeneration (nAMD) disease course using artificial intelligence (AI)
- ARIES¹ and ALTAIR²
 - Randomized, controlled, Phase 3b/4 trials
 - Treat & Extend (T&E) regimens in newly diagnosed nAMD patients
 - Three loading doses (initial monthly injections), followed by injection after 8 weeks with 2 mg intravitreal aflibercept (IVT-AFL)
 - Treatment intervals assessed based on prespecified spectral domain optical coherence tomography (SD-OCT) criteria at each injection visit over 2 years

Methods – Data

- Al analysis based on available SD-OCT images at Weeks 8 and 16
 - ARIES: SD-OCT images from 224 of 237 patients
 - ALTAIR: SD-OCT images from 112 of 246 patients
- Clinical patient documentation (visit intervals and injections as prediction targets)

Methods – criteria for interval adaptation

Criteria for interval adaptation for ARIES & ALTAIR interventional studies (see Table)

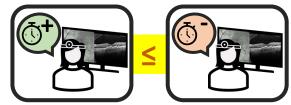


*Patients could receive more frequent treatment if identified as injection-intensive and were excluded from the per-protocol set; †Assessed by OCT; ‡Loss of ≥5 ETDRS letters from the last treatment visit, in conjunction with recurrent fluid on OCT; §Increase in CRT of ≥100 µm compared with the lowest previous value by OCT.

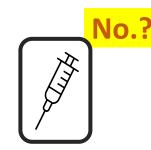
CRT, central retinal thickness; ETDRS, Early Treatment Diabetic Retinopathy Study; IRF, intraretinal fluid; SRF, subretinal fluid. 1. Ohji M, et al. Adv Ther. 2020;37:1173–1187.

Methods – Al pipeline

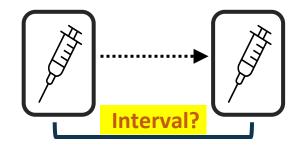
- Evaluation and adaptation of the existing AI models in the deepeye[®] research tool^{1–3}
- Al architecture
 - Input: SD-OCT images from Weeks 8 and 16 from ARIES & ALTAIR studies
 - Two AI networks: Biomarker segmentation (i) and prediction model (ii)
 - Use of AI model trained on SD-OCT data of real-world pro re nata (PRN) cohort¹
 - Retrain model (ii) and apply AI model to T&E datasets from ARIES & ALTAIR SD-OCT
- Assess agreement between AI model and study results (5-fold cross-validation)



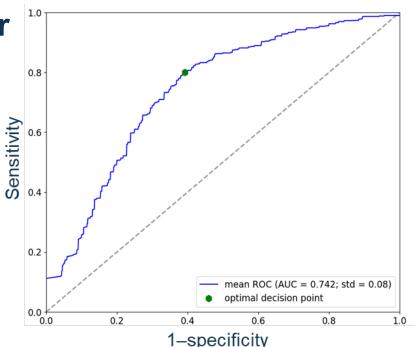
ILM, internal limiting membrane, IPL, inner plexiform layer; OPL, outer plexiform layer, RPE, retinal pigment epithelium; IRF, intraretinal fluid; SRF, subretinal fluid 1. Gutfleisch M, et al. Graefes Arch Clin Exp Ophthalmol. 2022;260:2217–2230. 2. Gutfleisch M, et al. Poster (PFr05-05) presented at DOG 2022. 3. Rothaus K, et al. Poster (PDo04-11) presented at DOG 2022.


Methods – experiments

- Prediction of treatment frequency and interval
 - Experiment 1: Prediction of potential adequate first injection interval: <3 vs ≥3 interval extensions in the first four visits after initiation*
 - Experiment 2: Prediction of injection frequency in first and second years
 - Experiment 3: Prediction of treatment interval after second year (end of study)
- Documented study data served as ground-truth
- In this presentation, we show detailed results of Experiment 3:
 - Ground-truth: Intended patient individual treatment interval after 2 years
 - Al task: Prediction of this interval (see above), binarized into two classes
 - Short intervals (<12 weeks)
 - Long intervals (≥12 weeks)



Experiment 2:



Experiment 3:

Results of Experiment 3 – interval after second year

- ARIES:
 - Sensitivity: Patients identified as needing a 'short' interval: From study data: 116 patients; from model: 93 patients (80% sensitivity)
 - **Specificity:** Patients identified as needing a **'long'** interval: From study data: 105 patients; from model: 66 patients (63% specificity)
 - **Overall accuracy** of the algorithm in this case was 71%
- ALTAIR: Results with machine learning (not deep learning) approaches
 - Sensitivity: 34 of 43 (81%)
 - **Specificity:** 24 of 34 (71%)

ROC of Experiment 3 for ARIES. Threshold for accuracy chosen as 0.5 (not equal to the optimal decision point).

	AUC	Accuracy	Sensitivity	Specificity	No.of short intervals	No. of long intervals
ARIES*	0.74	71%	80% (93/116)	63% (66/105)	116	105
ALTAIR*	0.77	76%	81% (34/43)	71% (24/34)	43	34

Short interval: Intended patient individual treatment interval after 2 years <12 weeks. Long interval: Intended patient individual treatment interval after 2 years ≥12 weeks.

*Numbers of patients differ from total numbers (Slide 3). ARIES: Three images excluded due to too poor image quality for segmentation. ALTAIR: 35 cases excluded due to missing reading-center proved annotations. ROC, receiver operator characteristic; AUC, area under the curve

Results – additional experiments

- Experiment 1: <3 interval extensions in the four visits after treatment initiation* (starting from Week 16)
- Experiment 2 (first year): ≥8 injections
- Experiment 2 (second year): ≥5 injections

	Experiment	Study	AUC	Accuracy	Sensitivity	Specificity	No.of Positives	No. of Negatives
	Experiment 1	ARIES	0.87	77%	83% (59/72)	71% (26/36)	72	36
No.?	Experiment 1	ALTAIR	0.78	78%	85% (31/37)	71% (36/46)	37	46
First year	Experiment 2 (first year)	ARIES	0.84	75%	81% (52/64)	70% (31/44)	64	44
No.?	Experiment 2 (first year)	ALTAIR	0.79	79%	79% (27/35)	78% (42/54)	35	54
Second year	Experiment 2 (second year)	ARIES	0.79	73%	75% (79/105)	71% (82/116)	105	116
	Experiment 2 (second year)	ALTAIR	0.78	78%	87% (34/39)	69% (26/38)	39	38

Experiment 1: Predict first potential adequate injection interval.

Experiment 2: Predict injection frequency in first and second treatment years.

*Treatment initiation with initial monthly injections.

Conclusions

- AI models successfully adapted from PRN to T&E prediction
- New AI algorithm accurately assigns a percentage between 71% and 76% of patients to the <12 weeks or ≥12 weeks interval extension groups (→ Experiment 3)
- Further experiments achieved a good* prediction accuracy, between 73% and 78%; AUC of 0.78–0.84
- Potential clinical benefits for prediction of future treatment need
 - Informing patients about the expected need for therapy
 - Support ophthalmologists in optimizing treatment regimens
 - Reduce risk of under- and overtreatment
 - Reduce treatment burden for patients and caregivers
 - Improve therapy adherence
- Al models can potentially mitigate the variability among medical experts
- The limitations are the use of controlled study data with a preselected cohort of patients

Thank you for your attention