

EFFICACY OF ELINZANETANT ON VASOMOTOR SYMPTOMS AND SLEEP DISTURBANCE

James A. Simon¹, Claudio N. Soares², Hadine Joffe³, Nick Panay⁴, Rossella E. Nappi⁵, Cecilia Caetano⁶, Claudia Haberland⁷, Christian Seitz^{7,8}, Andrew Trigg⁹, Cecile Jansseswillen⁶, Lineke Zuurman⁶

¹George Washington University, IntimMedicine Specialists, Washington, DC, USA; ²Queen's University School of Medicine, Kingston, ON, Canada; ³Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; ⁴Queen Charlotte's & Chelsea Hospital, Imperial College, London, UK;

⁵University of Pavia, Pavia, Italy; ⁶Bayer CC AG, Basel, Switzerland; ⁷Bayer AG, Berlin, Germany; ⁸Charité – Universitätsmedizin Berlin, Berlin, Germany; ⁹Bayer plc, Reading, UK

BACKGROUND AND OBJECTIVES

OASIS-1 AND -2

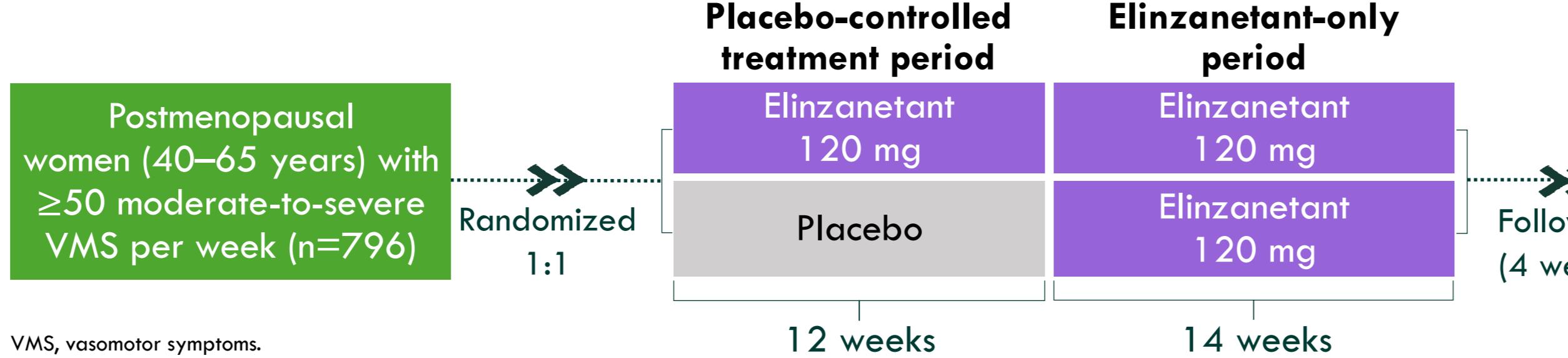
Elizanetant, a dual neurokinin (NK)-targeted therapy (NK1 and NK3 receptor antagonist), significantly reduced moderate-to-severe vasomotor symptom (M/S VMS) frequency and severity, improved sleep disturbance and menopause-related quality of life compared with placebo, and had a favorable safety profile in women with M/S VMS in 2 global Phase III trials (OASIS-1 and OASIS-2)¹

Post hoc analyses

VMS BY TIME OF DAY

Characterize the effect of elizanetant on VMS frequency at different times of day (daytime and nighttime) over 12 weeks

SLEEP BY BASELINE VMS


Assess the effect of elizanetant on sleep disturbance across subgroups defined by baseline VMS frequency

METHODS

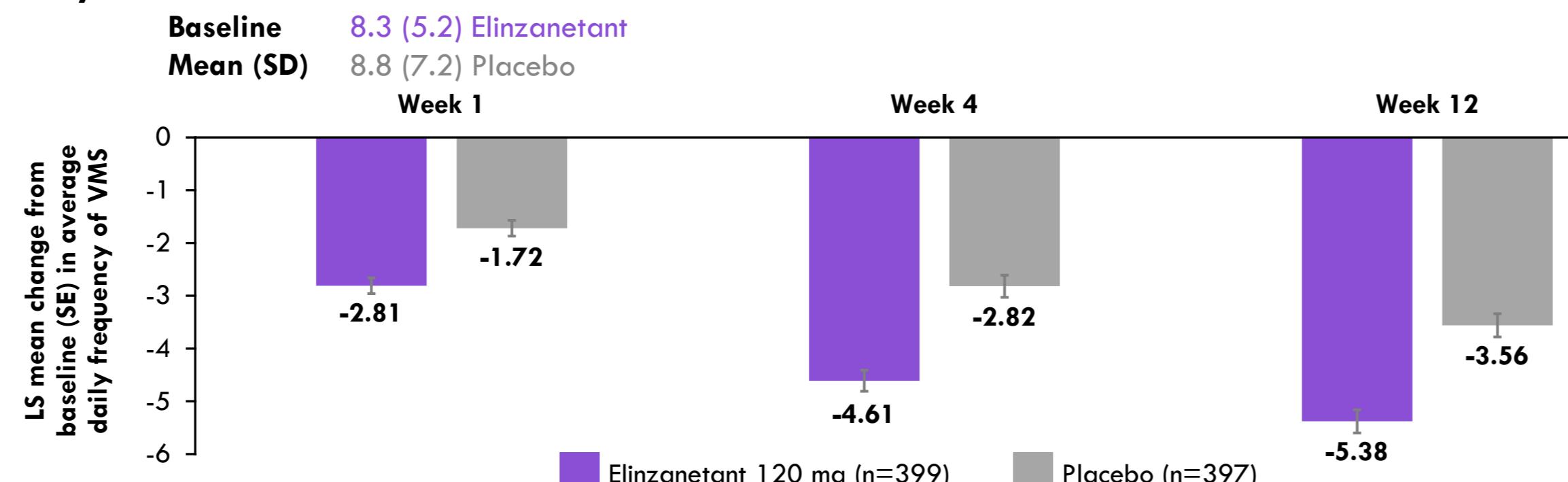
Study design and participants

OASIS-1 (NCT05042362) and OASIS-2 (NCT05099159) were Phase III, randomized, placebo-controlled, multicenter, multicountry, double-blind trials with similar designs. The trials enrolled naturally or surgically (bilateral oophorectomy with or without hysterectomy) postmenopausal women aged 40–65 years and experiencing ≥50 M/S VMS over 7 days during screening. Participants were randomly assigned in a 1:1 ratio to receive either elizanetant 120 mg for 26 weeks or placebo for 12 weeks followed by elizanetant for 14 weeks; presented here are results for a post hoc pooled exploratory analysis from the US population (Figure 1)

Figure 1. Design of OASIS-1 and -2

Table 2. Post hoc analyses from the OASIS-1 and -2 trials

Moderate-to-severe VMS assessed by time of day	
Subgroups	Daytime VMS vs nighttime VMS
Assessment	VMS frequency recorded via the hot flash daily diary completed morning and evening: <ul style="list-style-type: none"> Daytime VMS: from evening entries Nighttime VMS: from morning entries
Analysis	Mean frequency of daytime and nighttime VMS for each week on treatment was calculated using available data for that week and averaged to a mean daily frequency per period
Statistical method	Baseline values were calculated using diary entries from the 14 days prior to treatment start
Time points	This analysis included only moderate-to-severe VMS
	MMRM to analyze differences in LS mean change from baseline between elizanetant and placebo; 1-sided p values are indicative, not confirmatory
	Baseline; weeks 1, 4, and 12


PROMIS SD SF 8b by moderate-to-severe VMS frequency	
Subgroups	Stratified by baseline mean daily VMS frequency: <ul style="list-style-type: none"> ≥12/day (higher VMS group) <12/day (lower VMS group)
Assessment	Sleep disturbance measured using the PROMIS SD SF 8b (higher score = worse sleep disturbance)
Analysis	Mean change from baseline in total T-scores compared between treatment arms within each VMS burden subgroup
Statistical method	MMRM to analyze differences in LS mean change from baseline between elizanetant and placebo; p values are indicative, not confirmatory
Time points	Baseline; weeks 1, 4, and 12

LS, least squares; MMRM, mixed model for repeated measures; PROMIS SD SF 8b, Patient-Reported Outcomes Measurement Information System Sleep Disturbance Short Form 8b; VMS, vasomotor symptoms.

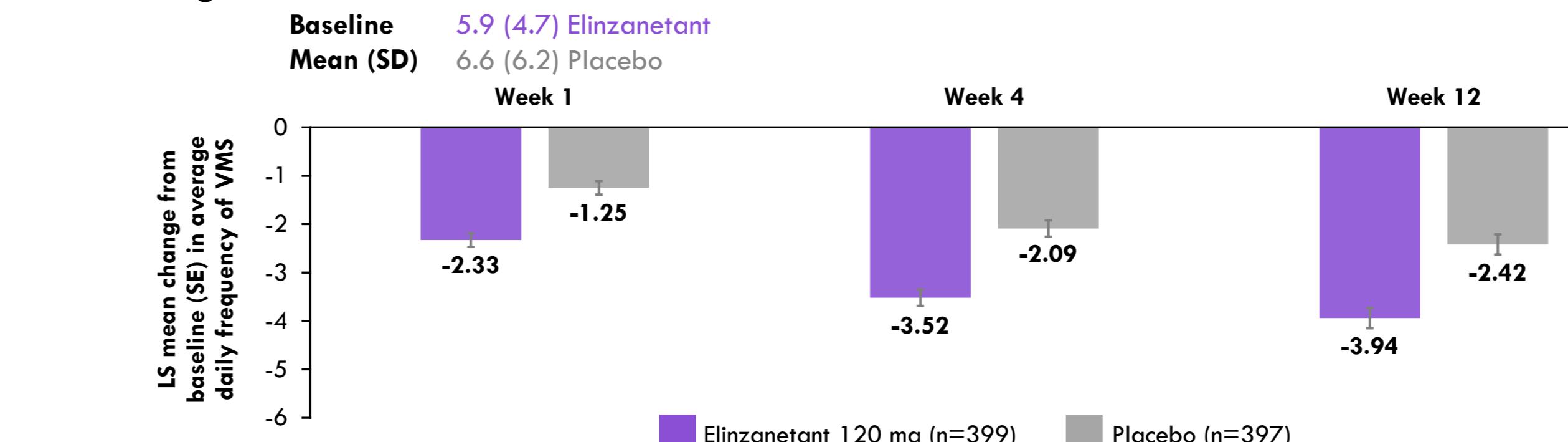
RESULTS

Figure 2. Mean moderate-to-severe VMS frequency at week 12


Daytime VMS

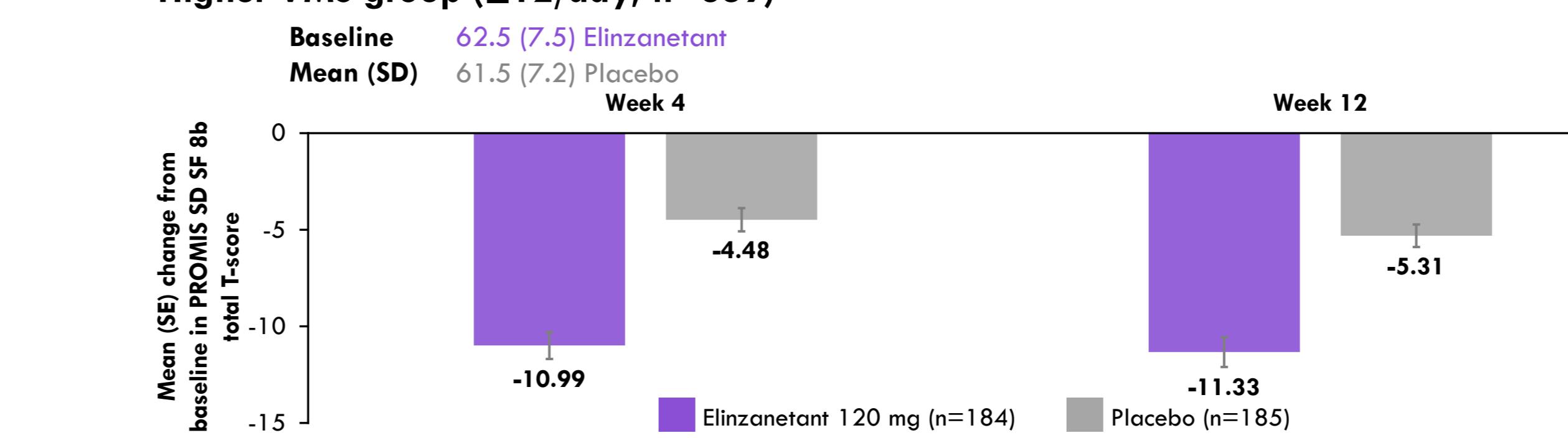
In the MMRM analysis, reductions from baseline in M/S VMS daily frequency by daytime VMS (LS mean change [95% CI]) were greater with elizanetant vs placebo at week 1 (-1.1 [-1.5, -0.7]), week 4 (-1.8 [-2.3, -1.2]), and week 12 (-1.8 [-2.4, -1.2]) (all p<0.0001)

p values are indicative, not confirmatory; CI, confidence interval; LS, least squares; MMRM, mixed model for repeated measures; M/S, moderate-to-severe; SD, standard deviation; SE, standard error; VMS, vasomotor symptoms.


Lower VMS group (<12/day; n=426)

In the MMRM analysis, reductions in sleep disturbance in participants with low VMS at baseline (LS mean change [95% CI]) were greater with elizanetant vs placebo (PROMIS SD SF 8b total T-score at week 4: -4.9 [-6.4, -3.5]; and week 12: -4.3 [-5.8, -2.9]) (both p<0.0001)

p values are indicative, not confirmatory. CI, confidence interval; LS, least squares; MMRM, mixed model for repeated measures; PROMIS SD SF 8b, Patient-Reported Outcomes Measurement Information System Sleep Disturbance Short Form 8b; SD, standard deviation; SE, standard error; VMS, vasomotor symptoms.


Nighttime VMS

In the MMRM analysis, reductions from baseline in M/S VMS daily frequency by nighttime VMS (LS mean change [95% CI]) were greater with elizanetant vs placebo at week 1 (-1.1 [-1.5, -0.7]), week 4 (-1.4 [-1.9, -1.0]), and week 12 (-1.5 [-2.1, -0.9]) (all p<0.0001)

p values are indicative, not confirmatory; CI, confidence interval; LS, least squares; MMRM, mixed model for repeated measures; SD, standard deviation; SE, standard error; VMS, vasomotor symptoms.

Higher VMS group (≥12/day; n=369)

In the MMRM analysis, reductions in sleep disturbance in participants with high VMS at baseline (LS mean change [95% CI]) were greater with elizanetant vs placebo (PROMIS SD SF 8b total T-score at week 4: -5.8 [-7.3, -4.3]; and week 12: -5.5 [-7.1, -3.9]) (both p<0.0001)

p values are indicative, not confirmatory. CI, confidence interval; LS, least squares; MMRM, mixed model for repeated measures; PROMIS SD SF 8b, Patient-Reported Outcomes Measurement Information System Sleep Disturbance Short Form 8b; SD, standard deviation; SE, standard error; VMS, vasomotor symptoms.

CONCLUSIONS

Consistent reductions of M/S VMS frequency during the day and the night

Elinzantant demonstrated greater reductions than placebo in M/S VMS during both daytime and nighttime, with improvements seen as early as week 1 and sustained through week 12

Sleep improvement possibly independent of VMS burden

Greater reductions in sleep disturbance were observed with elizanetant vs placebo, regardless of baseline VMS frequency (≥12/day or <12/day)

These results underscore the potential of elizanetant to improve VMS and sleep disturbance, 2 of the most frequent and disruptive menopausal symptoms

REFERENCES

1. Pinkerton JV, et al. JAMA. 2024;332(16):1343–1354.

ACKNOWLEDGEMENTS

The OASIS-1 and -2 trials were funded by Bayer. Medical writing assistance was provided by Hannah Chatfield, BSc (Hon), of Envision Catalyst, an Envision Medical Communications agency, a part of Envision Pharma Group, and was funded by Bayer.

DISCLOSURES

James A. Simon: grant/research support from AbbVie, Bayer, Daré Bioscience, Ipsen, Mylan/Viatris, Myovant, ObsEva, Sebela, and Viveve Medical; consultant/advisory boards for Bayer, Besins Healthcare, California Institute of Integral Studies, Camargo, Covance, Daré Bioscience, DEKA M.E.L.A. Srl, Femaxis, Kalmedy/NeRREtherapeutics, Khyria, Madora, Mitsubishi Tanabe, QUE Oncology, Scynexis, Sebela, Sprout, and Vela Bioscience; speakers bureaus for Mayne, Myovant, Pfizer, Pharmavite, Scynexis, and Therapeutics MD; and stockholder (direct purchase) in Sermonix, Claudio N. Soares: research grants from Eisai, Clairvoyant Therapeutics, and Ontario Brain Institute, and consultancy work for Bayer, Diamond Therapeutics, Eisai, and Otsuka. Hadine Joffe: grants from Merck, the National Institutes of Health, and Pfizer, and performed consultancy work for Bayer, Heli Therapeutics, and Merck. Nick Panay: lectured and acted in an advisory capacity for Abbott, Astellas, Bayer, Besins Healthcare, Gedeon Richter, Mithra, Novo Nordisk, SeCur, Theramax, and Viatris, and Viaty Laboratories. Claudia Haberland, Christian Seitz: employees of Bayer AG (Berlin, Germany). Andrew Trigg: employee of Bayer plc (Reading, UK). Cecilia Caetano, Cecile Jansseswillen, Lineke Zuurman: employees of Bayer CC AG (Basel, Switzerland).