SERUM TRANSTHYRETIN LEVELS AT DAY 28 ARE ASSOCIATED WITH CARDIOVASCULAR OUTCOMES: INSIGHTS FROM THE ATTRibute-CM STUDY

Nitasha Sarswat,¹ Amrut V. Ambardekar,² Richard Wright,³ Margot K. Davis,⁴ Julian D. Gillmore,⁵ Justin L. Grodin,⁶ Joshua D. Mitchell,⁷ Deirdre Mooney,⁸ Jose Nativi-Nicolau,⁹ Frederick L. Ruberg,¹⁰ Chris Chen,¹¹ Alan Ji,¹¹ Jean-François Tamby,¹¹ Uma Sinha,¹¹ Jonathan C. Fox,¹¹ Mathew S. Maurer,¹² and Richard K. Cheng¹³

¹Division of Cardiovascular Medicine, University of Chicago Medicine, Chicago, IL, USA; ²Division of Cardiology, Department of Medicine, University of Colorado, Aurora, CO, USA; ³Pacific Heart Institute and Providence, St. John's Health Center, Santa Monica, CA, USA; ⁴Division of Cardiology, University of British Columbia, Vancouver, BC, Canada; ⁵National Amyloidosis Centre, Division of Medicine, University College London, Royal Free Hospital, London, UK; ⁶Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; ⁷Cardiovascular Division, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; ⁸Providence Center for Advanced Heart Disease & Transplant, Spokane, WA, USA; ⁹Division of Advanced Heart Failure and Heart Transplantation, Mayo Clinic, Jacksonville, FL, USA; ¹⁰Section of Cardiovascular Medicine, Department of Medicine, Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA, USA; ¹¹BridgeBio Pharma, Inc., San Francisco, CA, USA; ¹²Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; ¹³University of Washington, Seattle, WA, USA

Presenter: Nitasha Sarswat

DISCLOSURE OF RELEVANT FINANCIAL RELATIONSHIPS WITH INDUSTRY AND ACKNOWLEDGMENTS

Nitasha Sarswat has received research funding from Pfizer; her institution has received funding for clinical trials from Alnylam Pharmaceuticals, AstraZeneca, BridgeBio Pharma, Intellia Therapeutics, Novo Nordisk, and Pfizer; and her institution has received advisor funding for Alnylam Pharmaceuticals, AstraZeneca, BridgeBio Pharma, Novo Nordisk, and Pfizer

A.V.A., D.M., and R.K.C. have no relevant financial relationships to disclose. R.W. has acted as a consultant, advisor, or speaker for Alnylam Pharmaceuticals, Amgen, AstraZeneca, Boehringer Ingelheim, BridgeBio Pharma, Bristol Myers Squibb, Cytokinetics, Lexicon Pharmaceuticals, Lilly, MyoKardia, and Novartis. M.K.D. has received honoraria from Alnylam Pharmaceuticals, AstraZeneca, BridgeBio Pharma, Pfizer, and Novo Nordisk; and has received research grant support from Pfizer. J.D.G. has acted as a consultant, advisor, or speaker for Alnylam Pharmaceuticals, AstraZeneca, Attralus, BridgeBio Pharma, Intellia Therapeutics, Ionis Pharmaceuticals, Lycia Therapeutics, and Pfizer. J.L.G. has acted as a researcher for the Texas Health Resources clinical scholarship, BridgeBio Pharma, the National Heart, Lung, and Blood Institute (R01HL160892), and Pfizer; and as a consultant, advisor, or speaker for Alexion Pharmaceuticals, Alnylam Pharmaceuticals, AstraZeneca, BridgeBio Pharma, Intellia Therapeutics, Lumanity, Novo Nordisk, Pfizer, Tenax Therapeutics, and Ultromics.

J.D.M. has received research support from Abbott Laboratories and Myocardial Solutions; and has acted as a consultant, advisor, or speaker for Alnylam Pharmaceuticals, AstraZeneca, BridgeBio Pharma, and Pfizer. J.N.N. has acted as a researcher for Alnylam Pharmaceuticals, AstraZeneca, BridgeBio Pharma, and Pfizer. F.L.R. has acted as a researcher for Alnylam Pharmaceuticals, Anumana, BridgeBio Pharma, the National Heart, Lung, and Blood Institute (R01HL139671), Pfizer, and TriNetX; and as a consultant or advisor to AstraZeneca and Attralus. C.C., A.J., J-F.T., U.S., and J.C.F. are employees and stockholders of BridgeBio Pharma. M.S.M. has acted as a researcher for Alnylam Pharmaceuticals, AstraZeneca, Attralus, BridgeBio Pharma, Intellia Therapeutics, Ionis Pharmaceuticals, Aovo Nordisk, and Pfizer

Funding

ATTRibute-CM (ClinicalTrials.gov identifier: NCT03860935) was sponsored by BridgeBio Pharma, San Francisco, CA, USA

Acknowledgments

- The authors would like to thank the patients who participated in the ATTRibute-CM trial, their families, and caregivers
- The authors would also like to thank the ATTRibute-CM investigators and study center staff
- Under the direction of the authors, medical writing assistance was provided by Anson Shek, PhD, of Oxford PharmaGenesis, which was funded by BridgeBio Pharma. Editorial support and critical review were provided by Shweta Rane, PhD, CMPP, BCMAS, of BridgeBio Pharma

INTRODUCTION

- Low sTTR levels in patients with ATTR-CM are associated with worse clinical outcomes and increased mortality^{1,2}
 - Patients with sTTR levels \geq 20 mg/dL have a significantly reduced risk of ACM vs those with sTTR levels < 20 mg/dL²
 - Regardless of baseline levels, greater increases in sTTR levels are associated with greater improvements in CV outcomes³
- Acoramidis, an oral TTR stabilizer that achieves near-complete (≥ 90%) TTR stabilization, is approved in the USA, Europe, Japan, and the UK for ATTR-CM^{4–8}
- In the phase 3 ATTRibute-CM study,^a acoramidis led to a rapid (by Day 28) and sustained (through Month 30) increase in sTTR levels and reduced the risk of CV outcomes in participants with ATTR-CM^{9,10}

OBJECTIVE:

To assess if the acoramidis-led early increase in sTTR levels to ≥ 20 mg/dL at Day 28 is associated with reduced risks of cardiovascular mortality (CVM) and cardiovascular-related hospitalization (CVH) in patients with ATTR-CM

ACM, all-cause mortality; ATTR-CM, transthyretin amyloid cardiomyopathy; CV, cardiovascular; CVH, cardiovascular; CVH, cardiovascular mortality; sTTR, serum transthyretin; TTR, transthyretin.

1. Minervini A, et al. Eur. J. Intern. Med. 2025. doi:10.1016/j.ejim.2025.05.015.

2. Maurer MS, et al. J Am Coll Cardiol. 2025;85(20):1911-1923.

3. Cheng R, et al. Amyloid. 2024;31(suppl1):S117.

4. Judge DP, et al. J Am Coll Cardiol. 2019;74(3):285-295.

5. BridgeBio Pharma, Inc. Prescribing information, Attruby (acoramidis). FDA, 2024. Accessed November 04, 2025. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/216540s000lbl.pdf.

6. BridgeBio Europe B.V. SmPC, Beyonttra (acoramidis). EMA, 2024. Accessed November 04, 2025. https://www.ema.europa.eu/en/documents/product-information/beyonttra-epar-product-information_en.pdf.

7. Alexion. SmPC, Beyonttra (acoramidis). MHRA UK, 2025. Accessed November 04, 2025. https://www.pmda.go.jp/PmdaSearch/iyakuDetail/ResultDataSetPDF/870056_2190048F1029_1_01.

8. Bayer plc. SmPC, Beyonttra (acoramidis). MHRA UK, 2025. Accessed November 04, 2025. https://mhraproducts4853.blob.core.windows.net/docs/a59718d1af5328302357b1f6a18908322e4eb7f8.

9. Gillmore JD, et al. N Engl J Med. 2024;390(2):132-142.

10. Judge DP, et al. J Am Coll Cardiol. 2025;85(10):1003-1014.

^aClinicalTrials.gov identifier: NCT03860935.

METHODS

- The ATTRibute-CM study design has been previously described¹
 - > Participants with ATTR-CM aged 18–90 years were randomized 2:1 to receive acoramidis HCl 800 mg or placebo twice daily for 30 months
- > Efficacy analyses were conducted in the mITT population^a
- > sTTR concentrations were assessed using an immunoturbidimetric method^b in a central laboratory
- The proportions of participants with sTTR levels below the normal range (normal range: 20–40 mg/dL)² at baseline and Day 28 were determined
- The relationships between sTTR levels < 20 mg/dL and ≥ 20 mg/dL at Day 28 and the risks of CVM^c and of first CVH^d over 30 months were analyzed across pooled acoramidis and placebo treatment groups using a stratified log-rank test

amITT population consisted of all randomized participants who received at least one dose of acoramidis or placebo, had at least one post-baseline efficacy evaluation, and had a baseline eGFR of ≥ 30 mL/min/1.73 m². bThe Abbott ARCHITECT system was used for analysis. CVM included death adjudicated as CV or of undetermined cause by the CEC, cardiac mechanical assist device implantation, or heart transplantation. dCVH was defined as a nonelective admission to an acute care setting for CV-related morbidity that resulted in a stay of ≥ 24 hours. CVH included EOCI, which were unplanned medical visits of < 24 hours requiring treatment with an intravenous diuretic for the management of decompensated heart failure.

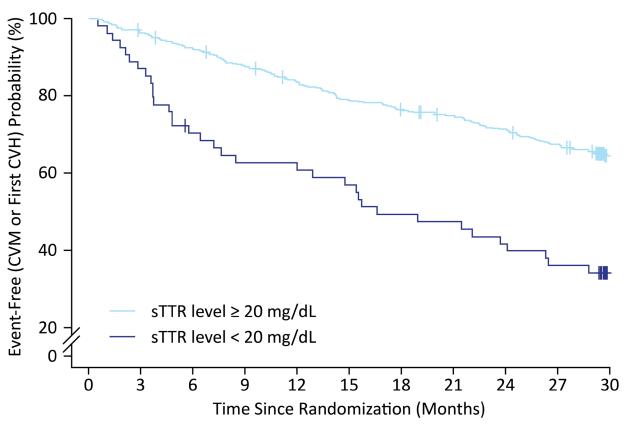
ATTR-CM, transthyretin amyloid cardiomyopathy; CEC, clinical events committee; CV, cardiovascular; CVM, cardiovascular mortality; CVH, cardiovascular-related hospitalization; eGFR, estimated glomerular filtration rate; EOCI, events of clinical interest; mITT, modified intention-to-treat; sTTR, serum transthyretin.

BASELINE DEMOGRAPHICS AND CLINICAL CHARACTERISTICS WERE COMPARABLE BETWEEN TREATMENT GROUPS¹

Baseline Demographic/Characteristic		Acoramidis (n = 409)	Placebo (n = 202)	Overall (N = 611)
Age, years	Mean (SD)	77.3 (6.5)	77.0 (6.7)	77.2 (6.6)
Sex, male	n (%)	374 (91.4)	181 (89.6)	555 (90.8)
Wild-type ATTR-CM ^a	n (%)	370 (90.5)	182 (90.1)	552 (90.3)
NYHA functional class	n (%)			
1		51 (12.5)	17 (8.4)	68 (11.1)
II		288 (70.4)	156 (77.2)	444 (72.7)
III		70 (17.1)	29 (14.4)	99 (16.2)
sTTR level, mg/dL	n	406	199	605
	Mean (SD)	23.0 (5.6)	23.6 (6.1)	23.2 (5.8)
< 20 mg/dL	n (%)	100 (24.6)	46 (23.1)	146 (24.1)
≥ 20 mg/dL	n (%)	306 (75.4)	153 (76.9)	459 (75.9)

^aTTR genotype was reported in the interactive voice/web response system at randomization.
ATTR-CM, transthyretin amyloid cardiomyopathy; NYHA, New York Heart Association; SD, standard deviation; sTTR, serum transthyretin.

1. Judge DP, et al. *J Am Coll Cardiol*. 2025;85(10):1003-1014.


AT DAY 28, FEWER THAN 2% OF PARTICIPANTS WHO RECEIVED ACORAMIDIS HAD sTTR LEVELS < 20 mg/dL

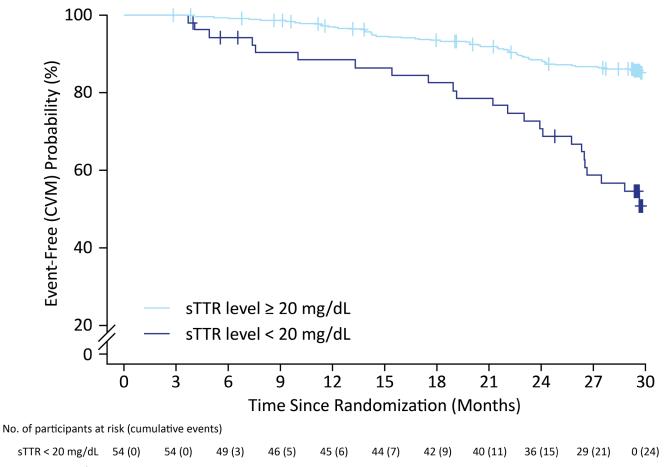
sTTR Level, mg/dL		Acoramidis (n = 409)	Placebo (n = 202)
Baseline	n	406	199
	Mean (SD)	23.0 (5.6)	23.6 (6.1)
Day 28	n	365	180
	Mean (SD)	32.2 (6.5)	23.0 (6.1)

Data are for the mITT population in the ATTRibute-CM study, defined as all randomized participants who received at least one dose of acoramidis or placebo, had at least one post-baseline efficacy evaluation, and had a baseline eGFR of ≥ 30 mL/min/1.73 m².

PARTICIPANTS WITH sTTR LEVELS ≥ 20 mg/dL AT DAY 28 HAD A LOWER RISK OF CVM OR FIRST CVH BY MONTH 30 VS THOSE WITH sTTR LEVELS < 20 mg/dL

	sTTR Level < 20 mg/dL (n = 54)	sTTR Level ≥ 20 mg/dL (n = 491)
Percentage of participants free from CVM or first CVH at Month 30 (95% CI)	34.2 (21.9, 46.9)	64.4 (59.9, 68.6)
<i>p</i> value ^a	< 0.0001	

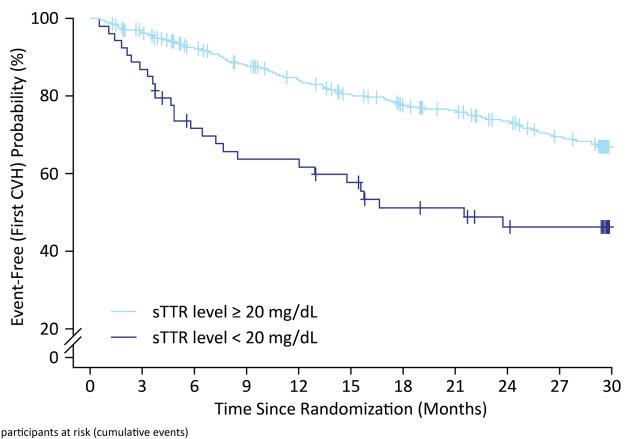
No. of participants at risk (cumulative events)


sTTR < 20 mg/dL 54 (0) 47 (7) 37 (16) 33 (20) 33 (20) 30 (23) 26 (27) 25 (28) 22 (31) 19 (34) 0 (35) sTTR ≥ 20 mg/dL 491 (0) 472 (18) 451 (38) 428 (60) 406 (80) 383 (103) 370 (115) 360 (122) 343 (139) 323 (158) 0 (171)

CVM included death adjudicated as CV or of undetermined cause by the CEC, cardiac mechanical assist device implantation, or heart transplantation. CVH was defined as a nonelective admission to an acute care setting for CV-related morbidity that resulted in a stay of ≥ 24 hours. CVH included EOCI, which were unplanned medical visits of < 24 hours requiring treatment with an intravenous diuretic for the management of decompensated heart failure.

³p values were based on a log-rank test that was stratified by randomization factors of genotype, NT-proBNP level, and eGFR at randomization.

CEC, clinical events committee; CI, confidence interval; CV, cardiovascular; CVH, cardiovascular-related hospitalization; CVM, cardiovascular mortality; eGFR, estimated glomerular filtration rate; EOCI, events of clinical interest; NT-proBNP, N-terminal pro-B-type natriuretic peptide; sTTR, serum transthyretin.


PARTICIPANTS WITH sTTR LEVELS ≥ 20 mg/dL AT DAY 28 HAD A LOWER RISK OF CVM BY MONTH 30 VS THOSE WITH sTTR LEVELS < 20 mg/dL

	sTTR Level < 20 mg/dL (n = 54)	sTTR Level ≥ 20 mg/dL (n = 491)
Percentage of participants free from CVM at Month 30 (95% CI)	50.7 (35.3, 64.3)	85.3 (81.6, 88.2)
<i>p</i> value ^a	< 0.0001	

sTTR < 20 mg/dL $sTTR \ge 20 \text{ mg/dL} \quad 491 (0)$ 448 (31) 0 (69)

PARTICIPANTS WITH sTTR LEVELS ≥ 20 mg/dL AT DAY 28 HAD A LOWER RISK OF FIRST CVH BY MONTH 30 VS THOSE WITH sTTR LEVELS < 20 mg/dL

	sTTR Level < 20 mg/dL (n = 54)	sTTR Level ≥ 20 mg/dL (n = 491)
Percentage of participants free from first CVH at Month 30 (95% CI)	46.3 (31.9, 59.6)	67.0 (62.4, 71.1)
<i>p</i> value ^a	0.0011	

No. of participants at risk (cumulative events)

sTTR < 20 mg/dL 54 (0) 0 (27) $sTTR \ge 20 \text{ mg/dL} \quad 491 (0)$ 466 (18) 432 (36) 406 (57) 380 (75) 357 (91) 338 (103) 327 (109) 309 (120) 286 (137) 0 (148)

CVH was defined as a nonelective admission to an acute care setting for CV-related morbidity that resulted in a stay of ≥ 24 hours. CVH included EOCI, which were unplanned medical visits of < 24 hours requiring treatment with an intravenous diuretic for the management of decompensated heart failure.

^ap values were based on a log-rank test that was stratified by randomization factors of genotype, NT-proBNP level, and eGFR at randomization.

CI, confidence interval; CV, cardiovascular; CVH, cardiovascular-related hospitalization; eGFR, estimated glomerular filtration rate; EOCI, events of clinical interest; NT-proBNP, N-terminal pro-B-type natriuretic peptide; sTTR, serum transthyretin.

CONCLUSIONS

- Regardless of treatment, sTTR levels at Day 28 of ≥ 20 mg/dL were associated with a lower risk of CV outcomes through Month 30 vs sTTR levels below the normal range (< 20 mg/dL) in the pooled analyses</p>
- These results demonstrate that higher sTTR levels shortly after treatment initiation have potential clinical benefits, including lower risks of CVM and CVH over 30 months