ACORAMIDIS IMPROVED CLINICAL OUTCOMES, FUNCTION, QUALITY OF LIFE, AND NT-proBNP IN PATIENTS WITH TRANSTHYRETIN AMYLOID CARDIOMYOPATHY REGARDLESS OF ATRIAL FIBRILLATION STATUS AT BASELINE

Brett W. Sperry,¹ Ahmad Masri,² Martha Grogan,³ Deirdre Mooney,⁴ Olakunle Akinboboye,⁵ Brian Drachman,⁶ Jose Nativi-Nicolau,⁷ Masatake Kobayashi,^{8,9} Chris Chen,¹⁰ Jean-François Tamby,¹⁰ Adam Castaño,¹⁰ Jonathan C. Fox,¹⁰ **Richard K. Cheng**,¹¹ Daniel P. Judge,¹² and Francesco Cappelli¹³

¹Saint Luke's Mid America Heart Institute and the University of Missouri–Kansas City, Kansas City, MO, USA; ²Oregon Health and Sciences University, Portland, OR, USA; ³Mayo Clinic, Rochester, MN, USA; ⁴Providence Center for Advanced Heart Disease & Transplantation, Spokane, WA, USA; ⁵Laurelton Heart Specialists, Rosedale, NY, USA; ⁶Division of Cardiology, Penn Presbyterian Medical Center, Philadelphia, PA, USA; ⁷Department of Transplantation, Division of Advanced Heart Failure and Transplant, Mayo Clinic, Jacksonville, FL, USA; ⁸

⁸Université de Lorraine, Inserm, Centre d'Investigations Cliniques-1433, and Inserm, CHRU Nancy, F-CRIN INI-CRCT, Nancy, France; ⁹Department of Cardiology, Tokyo Medical University, Tokyo, Japan; ¹⁰BridgeBio Pharma, Inc., San Francisco, CA, USA; ¹¹University of Washington, Seattle, WA, USA; ¹²Medical University of South Carolina, Charleston, SC, USA; ¹³Tuscan Regional Amyloidosis Centre, Careggi University Hospital, Florence, Italy

Presenter: Richard K. Cheng

Scan the QR code to access a PDF version of this poster

DISCLOSURE OF RELEVANT FINANCIAL RELATIONSHIPS WITH INDUSTRY AND ACKNOWLEDGMENTS

Richard K. Cheng has no relevant financial relationships to disclose.

B.W.S. has acted as a speaker for Pfizer; and as a consultant for Alnylam Pharmaceuticals, AstraZeneca, and BridgeBio Pharma. A.M. has acted as a researcher for Attralus, Cytokinetics, Ionis Pharmaceuticals, and Pfizer; and as a consultant, advisor, or speaker for Akros Pharma, Alexion Pharmaceuticals, Alnylam Pharmaceuticals, AstraZeneca, Attralus, BioMarin Pharmaceutical, BridgeBio Pharma, Bristol Myers Squibb, Cytokinetics, Haya Therapeutics, Ionis Pharmaceuticals, Lexicon Pharmaceuticals, Pfizer, Prothena Biosciences, and Tenaya Therapeutics. M.G. has acted as a researcher for Alnylam Pharmaceuticals, BridgeBio Pharma, Intellia Therapeutics, Janssen Pharmaceuticals, Novo Nordisk, and Pfizer; and as a consultant, advisor, or speaker for Alnylam Pharmaceuticals, BridgeBio Pharma, Janssen Pharmaceuticals, Novo Nordisk, and Pfizer. D.M. has acted as a consultant, advisor, or speaker for Pfizer. O.A. has acted as a consultant, advisor, or speaker for Alnylam Pharmaceuticals, AstraZeneca, BridgeBio Pharma, and Pfizer. M.K. has received speaker fees from AstraZeneca, Bayer, Boehringer Ingelheim, Daiichi Sankyo, Eli Lilly, Mochida Pharmaceuticals, Nova Biomedical, and Novartis.

C.C., J-F.T., A.C., and J.C.F. are employees and stakeholders of BridgeBio Pharma. D.P.J. has received consultancy fees from Alexion Pharmaceuticals, Alleviant Medical, Alnylam Pharmaceuticals, Attralus, BridgeBio Pharma, Cytokinetics, Lexeo Therapeutics, Novo Nordisk, Pfizer, Renovacor, Rocket Pharmaceuticals, and Tenaya Therapeutics; and his institution received clinical trial funding from Array Biopharma, BridgeBio Pharma, MyoKardia, and Pfizer. F.C. has acted as a consultant, advisor, or speaker for Alnylam Pharmaceuticals, Amicus Therapeutics, AstraZeneca, Bayer, BridgeBio Pharma, Novo Nordisk, and Pfizer.

Funding

• ATTRibute-CM (ClinicalTrials.gov identifier: NCT03860935) was sponsored by BridgeBio Pharma, San Francisco, CA, USA

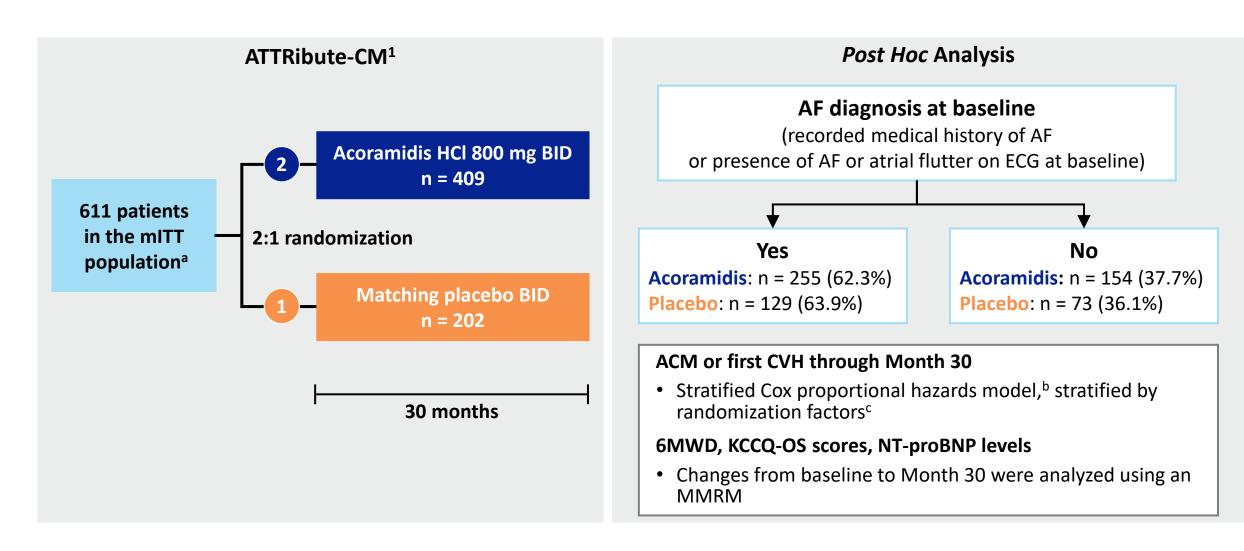
Acknowledgments

- The authors would like to thank the patients who participated in the ATTRibute-CM trial and their families
- The authors would also like to thank the ATTRibute-CM investigators
- Under the direction of the authors, medical writing assistance was provided by Helen Owens, PhD, of Oxford PharmaGenesis, which was funded by BridgeBio Pharma. Editorial support and critical review were provided by Dana Walters, PhD, and Shweta Rane, PhD, CMPP, BCMAS, of BridgeBio Pharma

INTRODUCTION

- ➤ AF is a common manifestation of ATTR-CM that can impact quality of life and is associated with poor outcomes, including an increased risk of CVH¹-³
- Acoramidis, an oral TTR stabilizer that achieves near-complete (≥ 90%) TTR stabilization, is approved in the USA, Europe, Japan, and the UK for the treatment of wild-type and variant ATTR-CM in adults⁴⁻⁸
- In the phase 3 ATTRibute-CM study,^a acoramidis treatment significantly reduced the risk of ACM or first CVH through Month 30, and improved 6MWD, KCCQ-OS scores, and NT-proBNP levels relative to placebo⁹
- The clinical efficacy of acoramidis in patients with ATTR-CM, stratified by their baseline AF diagnosis, has not yet been reported

OBJECTIVE:


To assess the effect of acoramidis on ACM or first CVH, 6MWD, KCCQ-OS score, and NT-proBNP level to Month 30 in participants with ATTR-CM according to AF status at baseline

^aClinicalTrials.gov identifier: NCT03860935.

6MWD, 6-minute walk distance; ACM, all-cause mortality; AF, atrial fibrillation; ATTR-CM, transthyretin amyloid cardiomyopathy; CVH, cardiovascular-related hospitalization; KCCQ-OS, Kansas City Cardiomyopathy Questionnaire-Overall Summary; NT-proBNP, N-terminal pro-B-type natriuretic peptide; TTR, transthyretin.

1. Prasad P, et al. *Circulation*. 2022;146(22):1730-1732. 2. Thrall G, et al. *Am J Med*. 2006;119(5):448.e1-19. 3. Chew DS, et al. *Circ Arrhythm Electrophysiol*. 2022;15(2):e010304. 4. Judge DP, et al. *J Am Coll Cardiol*. 2019;74(3):285-295. 5. BridgeBio Pharma, Inc. Prescribing Information, Attruby (acoramidis). FDA, 2024. Accessed October 6, 2025. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/216540s000lbl.pdf. 6. BridgeBio Europe B.V. SmPC, Beyonttra (acoramidis). EMA, 2024. Accessed October 6, 2025. https://www.ema.europa.eu/en/documents/product-information/beyonttra-epar-product-information_en.pdf. 7. Alexion. SmPC, Beyonttra (acoramidis). MHLW Japan, 2025. Accessed October 6, 2025. https://www.pmda.go.jp/PmdaSearch/iyakuDetail/ResultDataSetPDF/870056_2190048F1029_1_01. 8. Bayer plc. SmPC, Beyonttra (acoramidis). MHRA UK, 2025. Accessed October 6, 2025. https://mhraproducts4853.blob.core.windows.net/docs/a59718d1af5328302357b1f6a18908322e4eb7f8. 9. Gillmore JD, et al. *N Engl J Med*. 2024;390(2):132-142.

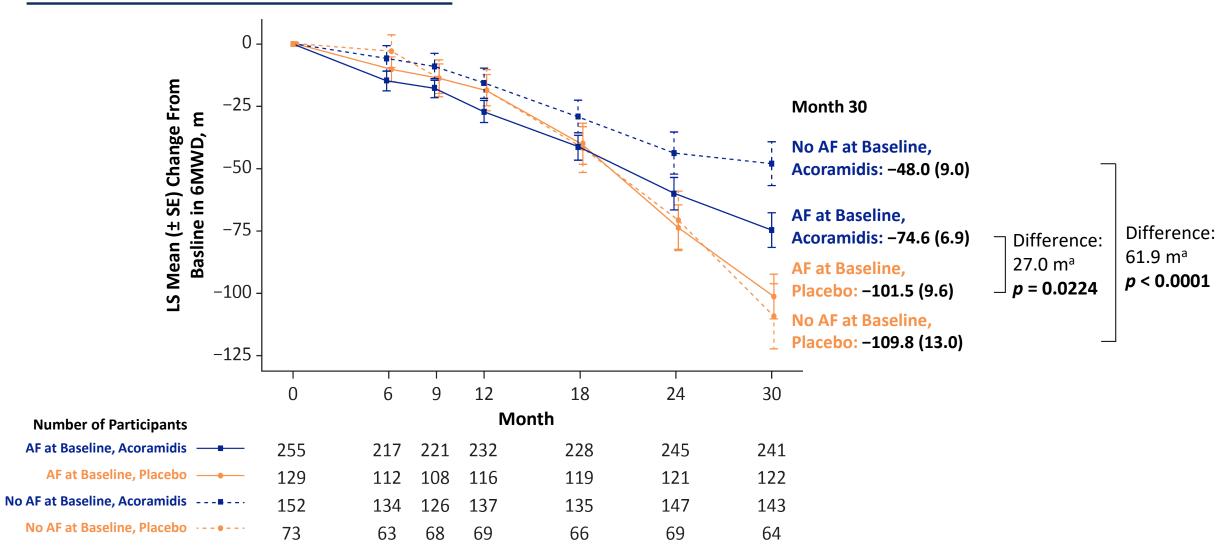
ATTRibute-CM: POST HOC ANALYSIS

^aAll randomized participants who received at least one dose of acoramidis or placebo, had at least one post-baseline efficacy evaluation, and had a baseline eGFR of ≥ 30 mL/min/1.73 m². ^bWith treatment as an explanatory factor and baseline 6MWD, AF diagnosis at baseline, and the interaction between AF diagnosis at baseline and treatment as covariates. Genotype, NT-proBNP level, and eGFR. 6MWD, 6-minute walk distance; ACM, all-cause mortality; AF, atrial fibrillation; BID, twice a day; CVH, cardiovascular-related hospitalization; ECG, electrocardiogram; eGFR, estimated glomerular filtration rate;

KCCQ-OS, Kansas City Cardiomyopathy Questionnaire-Overall Summary; mITT, modified intention-to-treat; MMRM, mixed effects model for repeated measures; NT-proBNP, N-terminal pro-B-type natriuretic peptide.

BASELINE DEMOGRAPHICS AND CHARACTERISTICS BY BASELINE AF STATUS

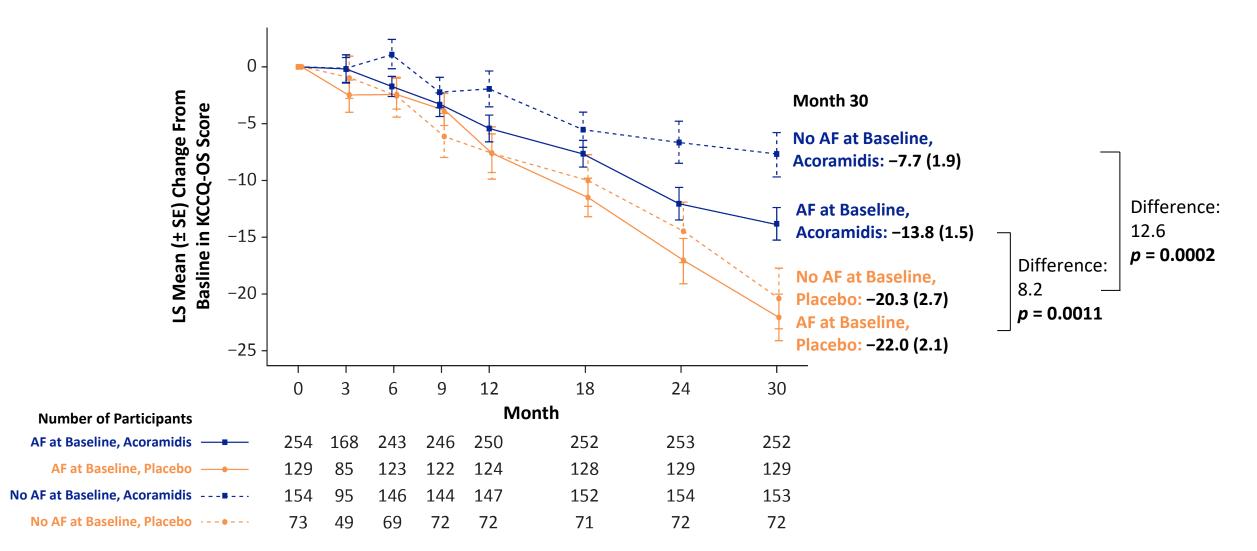
Baseline Demographic/Characteristic (mITT Population)		AF at Baseline			No AF at Baseline		
		Acoramidis (n = 255)	Placebo (n = 129)	Overall (N = 384)	Acoramidis (n = 154)	Placebo (n = 73)	Overall (N = 227)
Age, years	Mean (SD)	77.7 (6.4)	77.4 (6.7)	77.6 (6.5)	76.8 (6.7)	76.2 (6.7)	76.6 (6.7)
Sex, male	n (%)	238 (93.3)	118 (91.5)	356 (92.7)	136 (88.3)	63 (86.3)	199 (87.7)
Wild-type ATTR-CM ^a	n (%)	229 (89.8)	121 (93.8)	350 (91.1)	141 (91.6)	61 (83.6)	202 (89.0)
NYHA functional class	n (%)	30 (11.8) 178 (69.8) 47 (18.4)	8 (6.2) 99 (76.7) 22 (17.1)	38 (9.9) 277 (72.1) 69 (18.0)	21 (13.6) 110 (71.4) 23 (14.9)	9 (12.3) 57 (78.1) 7 (9.6)	30 (13.2) 167 (73.6) 30 (13.2)
6MWD, m	n Mean (SD)	255 348.1 (100.8)	129 344.6 (95.0)	384 347.0 (99.0)	152 387.3 (103.6)	73 363.7 (91.0)	225 380.0 (100.1)
KCCQ-OS score	n Mean (SD)	254 69.3 (20.4)	129 68.5 (21.6)	383 69.0 (20.8)	154 75.8 (16.7)	73 74.1 (18.5)	227 75.2 (17.3)
NT-proBNP, pg/mL	n Median (Q1, Q3)	255 2613 (1733, 4519)	129 2433 (1307, 4115)	384 2566 (1555, 4383)	154 1562 (915, 2573)	73 1882 (817, 2895)	227 1717 (880, 2852)


Participants with an AF diagnosis at baseline generally had lower mean 6MWD and KCCQ-OS scores and higher median NT-proBNP levels than those without an AF diagnosis at baseline; other baseline characteristics were comparable between groups

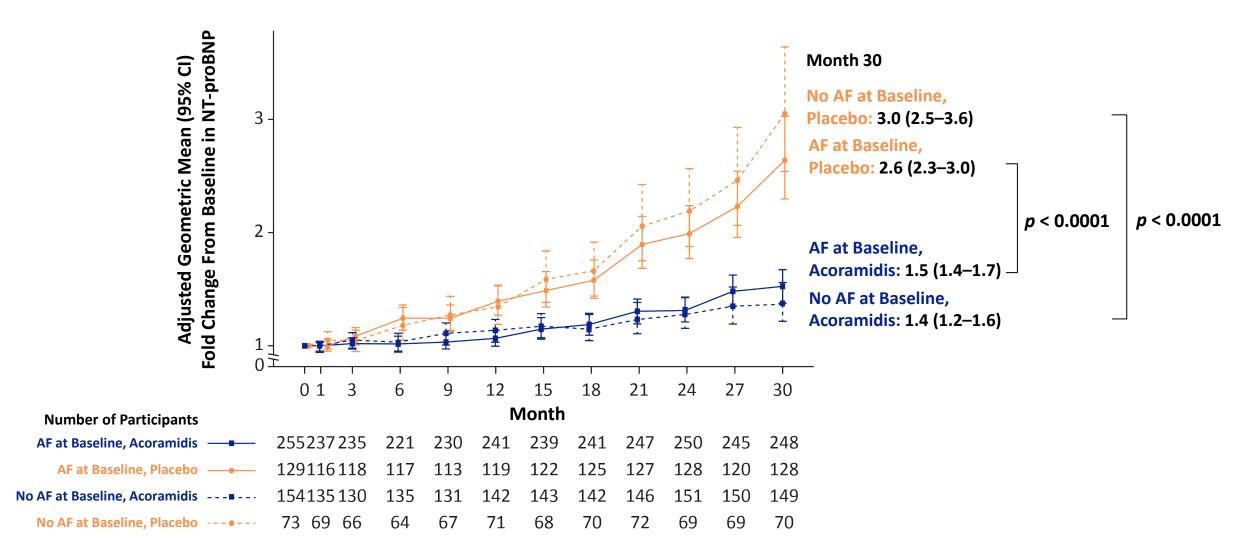
OCCURRENCE OF ACM OR FIRST CVH THROUGH MONTH 30 WAS SIGNIFICANTLY LOWER WITH ACORAMIDIS VS PLACEBO

^aThe occurrence of ACM or first CVH through Month 30 was compared between groups using a stratified Cox proportional hazards model that included treatment as an explanatory factor, and baseline 6MWD, AF diagnosis at baseline, and the interaction between AF diagnosis at baseline and treatment as covariates.

ACORAMIDIS REDUCED THE DECLINE IN 6MWD VS PLACEBO <u>REGARDLESS OF</u> AF DIAGNOSIS AT BASELINE


Changes from baseline were analyzed using an MMRM, with treatment group, visit, AF diagnosis at baseline, genotype, NT-proBNP level, eGFR, treatment-group-by-visit interaction,

Baseline AF-diagnosis-by-treatment-group interaction, Baseline AF-diagnosis-by-visit interaction, and baseline AF-diagnosis-by-treatment-group-by-visit interaction as factors, and baseline value as a covariate.


aAfter rounding.

6MWD, 6-minute walk distance; AF, atrial fibrillation; eGFR, estimated glomerular filtration rate; MMRM, mixed effects model for repeated measures; NT-proBNP, N-terminal pro-B-type natriuretic peptide; SE, standard error.

ACORAMIDIS REDUCED THE DECLINE IN KCCQ-OS SCORE VS PLACEBO REGARDLESS OF AF DIAGNOSIS AT BASELINE

ACORAMIDIS ATTENUATED THE RISE IN NT-proBNP VS PLACEBO <u>REGARDLESS</u> OF AF DIAGNOSIS AT BASELINE

CONCLUSIONS

- > Regardless of baseline AF status, acoramidis was consistently associated with:
 - a reduction in ACM or first CVH
 - > reduced declines in 6MWD and KCCQ-OS scores and
 - > an attenuated rise in NT-proBNP levels, compared with placebo
- The limitations of this study include that participants were not randomized by their AF status at baseline and that AF occurrence was not evaluated as a time-dependent variable
- The durability and long-term clinical effects of acoramidis are being assessed in the open-label extension study^a