ACORAMIDIS LOWERS NT-probnp in a larger proportion of ATTRibute-CM STUDY PARTICIPANTS WITH TRANSTHYRETIN AMYLOID CARDIOMYOPATHY COMPARED WITH PLACEBO, INDEPENDENT OF ATRIAL FIBRILLATION STATUS

Mathew S. Maurer,¹ Kevin M. Alexander,² Laura Obici,³ Steen Hvitfeldt Poulsen,⁴ James L. Januzzi,⁵ Ronald Witteles,⁶ Wael Jaber,⁷ Yevgeniy Brailovsky,¹ Kai Vogtländer,⁸ Adam Castaño,⁹ Jean-François Tamby,⁹ Jonathan C. Fox,⁹ Sumeet S. Mitter,¹⁰ Mazen Hanna,¹¹ and Brett W. Sperry¹²

¹Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; ²Department of Medicine, Division of Cardiovascular Medicine, Stanford Center for Clinical Research, Stanford University School of Medicine, Palo Alto, CA, USA; ³Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; ⁴Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark; ⁵Division of Cardiology, Massachusetts General Hospital, Baim Institute for Clinical Research, Boston, MA, USA; ⁶Division of Cardiovascular Medicine, Stanford Amyloid Center, Stanford, CA, USA; ⁷Department of Cardiovascular Imaging, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA; ⁸Bayer AG, Wuppertal, Germany; ⁹BridgeBio Pharma, Inc., San Francisco, CA, USA; ¹⁰Infiltrative and Restrictive Cardiomyopathy Center, Inova Schar Heart and Vascular, Falls Church, VA, USA; ¹¹Cleveland Clinic Amyloidosis Center, Cleveland, OH, USA; ¹²Saint Luke's Mid America Heart Institute, Kansas City, MO, USA

Presenter: Mathew S. Maurer

Scan the QR code to access a PDF version of this poster

DISCLOSURE OF RELEVANT FINANCIAL RELATIONSHIPS WITH INDUSTRY AND ACKNOWLEDGMENTS

Mathew S. Maurer has acted as a researcher for Alnylam Pharmaceuticals, Attralus, BridgeBio Pharma, Intellia Therapeutics, Ionis Pharmaceuticals, National Institutes of Health (R01HL177670 and R01AG081582-01), and Pfizer; and as a consultant or advisor for Alnylam Pharmaceuticals, AstraZeneca, Attralus, Bayer, BridgeBio Pharma, Intellia Therapeutics, Ionis Pharmaceuticals, Novo Nordisk, and Pfizer.

K.M.A. has acted as a consultant for Alexion, Alnylam Pharmaceuticals, Arbor Biotechnologies, Bayer, BridgeBio Pharma, Novo Nordisk, and Pfizer. L.O. has acted as a consultant, advisor, or speaker for Alnylam Pharmaceuticals, AstraZeneca, BridgeBio Pharma, Ionis Pharmaceuticals, Novo Nordisk, Pfizer, and Sobi – Swedish Orphan Biovitrum. S.H.P. has received consulting fees from Bayer, BridgeBio Pharma, and Pfizer; and research support from Novo Nordisk. J.L.J. has received research grants from or held a contract with Abbott Diagnostics, Applied Therapeutics, AstraZeneca, Bristol Myers Squibb, Heartflow, and Novartis; has acted as a consultant, advisor, or speaker for Abbott, AbbVie, AstraZeneca, Bayer, Beckman Coulter, Boehringer Ingelheim, Bristol Myers Squibb, CVRx, Intellia Therapeutics, Jana Care, Merck, Novartis, Pfizer, Roche Diagnostics, Siemens, and Takeda; and has stock interest in FIBROSYS, Imbria, Jana Care, and Prevencio. R.W. has received consulting fees from Alnylam Pharmaceuticals, Alexion Pharmaceuticals, AstraZeneca, BridgeBio Pharma, Novo Nordisk, and Pfizer. W.J. has acted as a consultant for Boston Scientific and Pfizer. Y.B. has received an educational grant from Pfizer; and has served on advisory boards for Alnylam Pharmaceuticals, AstraZeneca, BridgeBio Pharma, Inc., and Pfizer. K.V. is an employee and stockholder of Bayer AG. A.C., J.F.T., and J.C.F. are employees and stockholders of BridgeBio Pharma, San Francisco, CA, USA. S.S.M. has acted as a consultant for EmblemHealth and as an advisory board and/or speaker bureau consultant for Alexion, Alnylam Pharmaceuticals, BridgeBio Pharma, Cytokinetics, Novo Nordisk, and Pfizer. M.H. has served on advisory boards for Alexion, Alnylam Pharmaceuticals, AstraZeneca, and BridgeBio Pharma; and has received research grants from Pfizer.

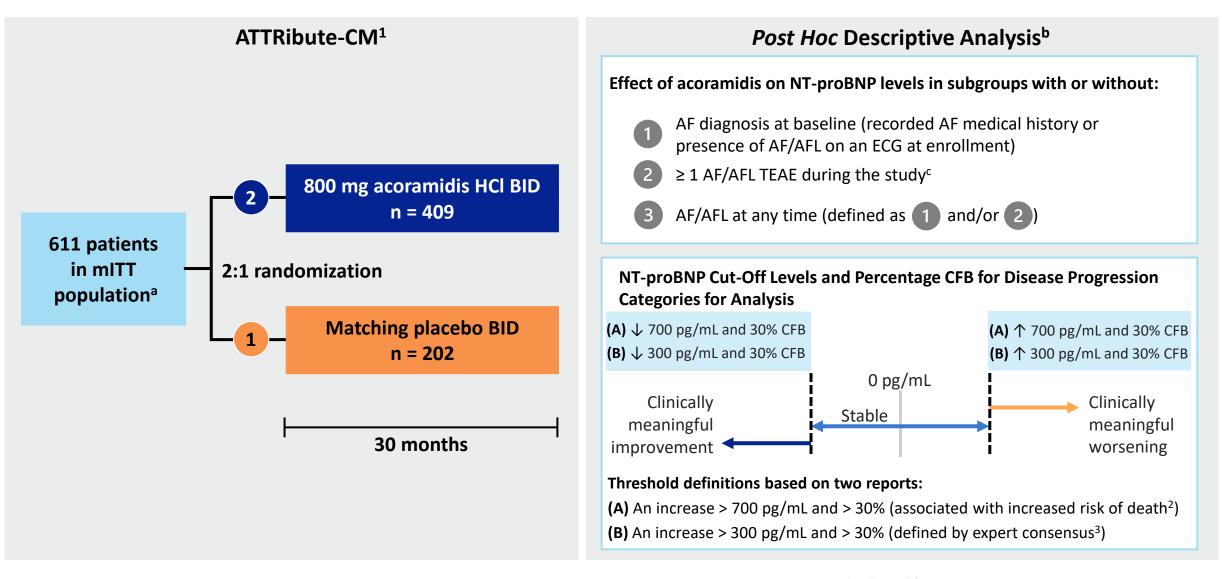
Funding

• ATTRibute-CM (ClinicalTrials.gov identifier: NCT03860935) was sponsored by BridgeBio Pharma, San Francisco, CA, USA

Acknowledgments

- The authors would like to thank the patients who participated in the ATTRibute-CM trial and their families
- The authors would also like to thank the ATTRibute-CM investigators
- Under the direction of the authors, medical writing assistance was provided by Helen Owens, PhD, of Oxford PharmaGenesis, which was funded by BridgeBio Pharma. Editorial support and critical review were provided by Dana Walters, PhD, and Shweta Rane, PhD, CMPP, BCMAS, of BridgeBio Pharma

INTRODUCTION


- ATTR-CM is characterized by destabilization of TTR and aggregation of amyloid fibrils in the heart, leading to progressive heart failure, impaired quality of life, hospitalizations, and death^{1,2}
- AF is a frequent complication of heart failure in ATTR-CM, and its presence is a marker of disease progression³
- A progressive rise in NT-proBNP levels is also an independent prognostic marker of ATTR-CM progression, and higher NT-proBNP levels are observed in patients with ATTR-CM with superimposed AF than in those without AF^{3,4}
- Acoramidis, an oral TTR stabilizer that achieves near-complete (≥ 90%) TTR stabilization, is approved in the USA, Europe, Japan, and the UK for the treatment of wild-type and variant ATTR-CM in adults⁵⁻⁹
- In the ATTRibute-CM study,^a acoramidis blunted the progressive rise in NT-proBNP levels compared with placebo in participants with ATTR-CM¹⁰

OBJECTIVE:

To assess the effect of acoramidis on ATTR-CM disease progression (based on NT-proBNP levels) according to AF status at baseline

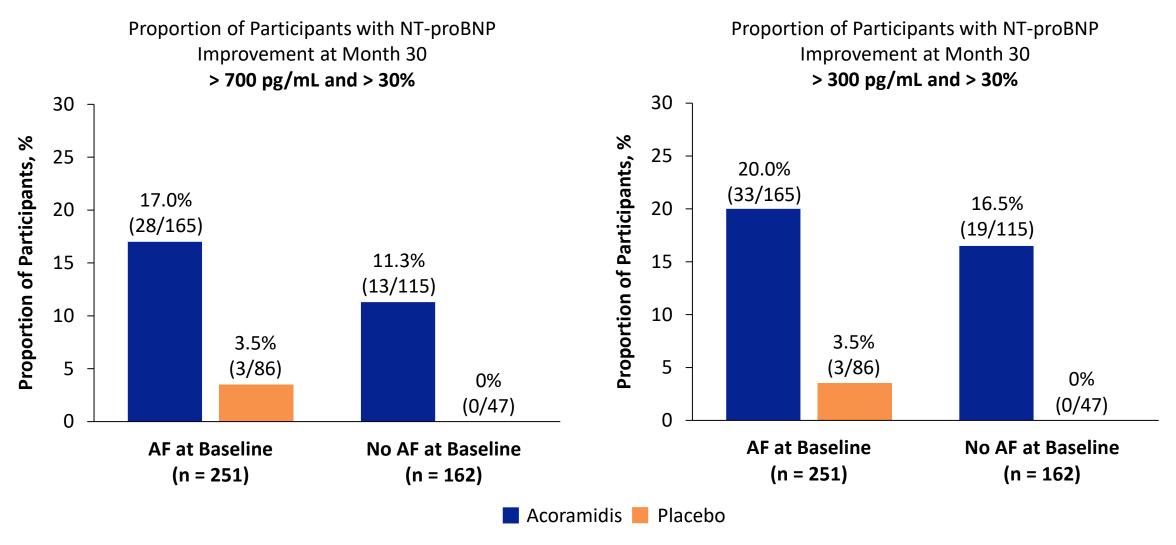
ATTRibute-CM: POST HOC ANALYSIS

^aAll randomized participants who received at least one dose of acoramidis or placebo, had at least one post-baseline efficacy evaluation, and had a baseline eGFR of ≥ 30 mL/min/1.73 m². ^bConducted in mITT population participants who had baseline and Month 30 NT-proBNP assessments available. ^cAF/AFL TEAEs were identified using 'atrial fibrillation', 'atrial flutter', and 'cardiac flutter' MedDRA preferred terms.

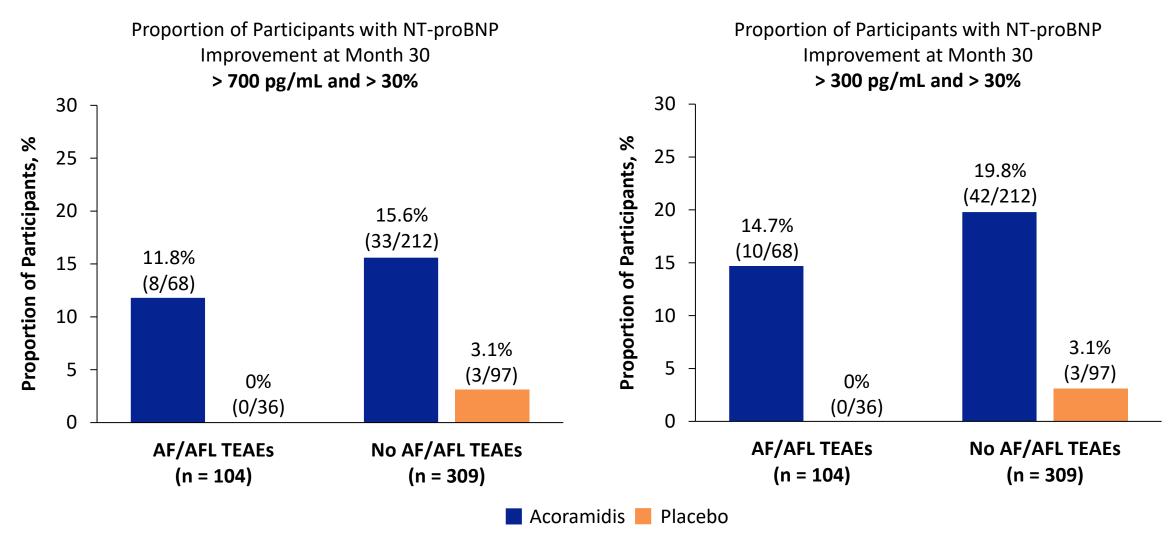
AF, atrial fibrillation; AFL, atrial flutter; BID, twice a day; CFB, change from baseline; ECG, electrocardiogram; eGFR, estimated glomerular filtration rate; mITT, modified intention-to-treat; NT-proBNP, N-terminal pro-B-type natriuretic

peptide; TEAE, treatment-emergent adverse event.

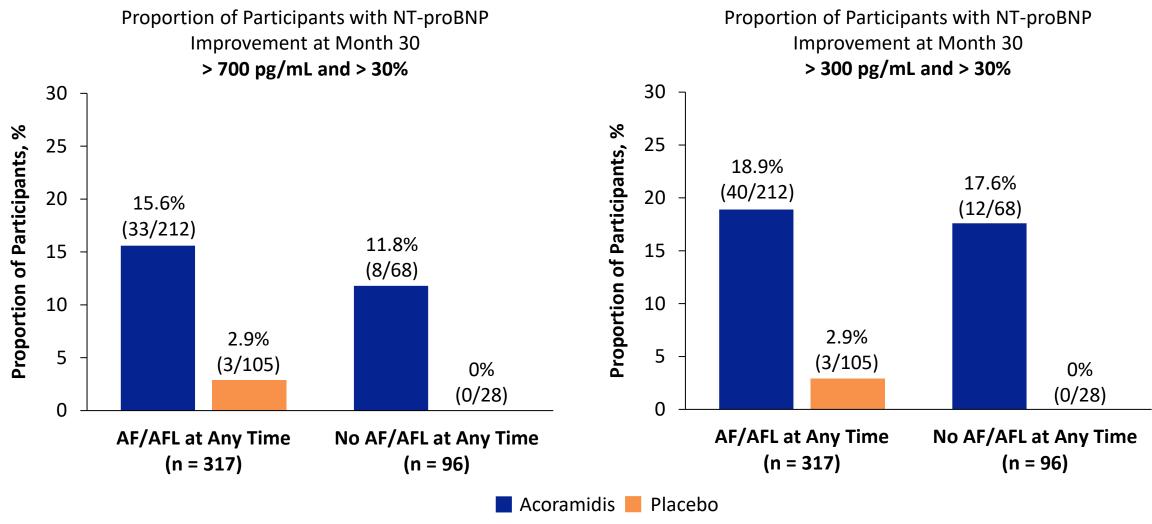
1. Gillmore JD, et al. N Engl J Med. 2024;390(2):132-142. 2. Ioannou A, et al. J Am Coll Cardiol. 2024;83(14):1276-1291. 3. Garcia-Pavia P, et al. Eur J Heart Fail. 2021;23(6):895-905.


BASELINE DEMOGRAPHICS AND CHARACTERISTICS BY BASELINE AF STATUS

Baseline		AF at Baseline			No AF at Baseline		
Demographic/Characteristic (mITT Population)		Acoramidis (n = 255)	Placebo (n = 129)	Overall (N = 384)	Acoramidis (n = 154)	Placebo (n = 73)	Overall (N = 227)
Age, years	Mean (SD)	77.7 (6.4)	77.4 (6.7)	77.6 (6.5)	76.8 (6.7)	76.2 (6.7)	76.6 (6.7)
Sex, male	n (%)	238 (93.3)	118 (91.5)	356 (92.7)	136 (88.3)	63 (86.3)	199 (87.7)
Wild-type ATTR-CM ^a	n (%)	229 (89.8)	121 (93.8)	350 (91.1)	141 (91.6)	61 (83.6)	202 (89.0)
NAC ATTR stage ^b	n (%)						
1		138 (54.1)	70 (54.3)	208 (54.2)	103 (66.9)	50 (68.5)	153 (67.4)
II		88 (34.5)	49 (38.0)	137 (35.7)	42 (27.3)	17 (23.3)	59 (26.0)
III		29 (11.4)	10 (7.8)	39 (10.2)	9 (5.8)	6 (8.2)	15 (6.6)
6MWD, m	n Mean (SD)	255 348.1 (100.8)	129 344.6 (95.0)	384 347.0 (99.0)	152 387.3 (103.6)	73 363.7 (91.0)	225 380.0 (100.1)
KCCQ-OS score	n Mean (SD)	254 69.3 (20.4)	129 68.5 (21.6)	383 69.0 (20.8)	154 75.8 (16.7)	73 74.1 (18.5)	227 75.2 (17.3)
NT-proBNP, pg/mL	n Median (Q1, Q3)	255 2613 (1733, 4519)	129 2433 (1307, 4115)	384 2566 (1555, 4383)	154 1562 (915, 2573)	73 1882 (817, 2895)	227 1717 (880, 2852)


Participants with an AF diagnosis at baseline generally had lower 6MWD and KCCQ-OS scores and higher NT-proBNP levels, and were more frequently categorized as having higher NAC ATTR stages, than those without an AF diagnosis at baseline

at TTR genotype was reported in the interactive voice/web response system at randomization. bNAC ATTR stage: NAC ATTR stage I, defined as NT-proBNP ≤ 3000 pg/mL and eGFR ≥ 45 mL/min/1.73 m²; stage III, defined as NT-proBNP > 3000 pg/mL and eGFR < 45 mL/min/1.73 m²; the remainder were categorized as stage II when both NT-proBNP and eGFR were not missing.
6MWD, 6-minute walk distance; AF, atrial fibrillation; ATTR, transthyretin amyloidosis; eGFR, estimated glomerular filtration rate; KCCQ-OS, Kansas City Cardiomyopathy Questionnaire Overall Summary; mITT, modified intention-to-treat; n, number of participants who had data available at baseline; NAC, National Amyloidosis Centre; NT-proBNP, N-terminal pro-B-type natriuretic peptide; Q1, first quartile; Q3, third quartile; SD, standard deviation; TTR, transthyretin.


ACORAMIDIS IMPROVED NT-probnp Levels at Month 30 vs placebo, REGARDLESS OF AF DIAGNOSIS AT BASELINE

ACORAMIDIS IMPROVED NT-proBNP LEVELS AT MONTH 30 VS PLACEBO, REGARDLESS OF OCCURRENCE OF AF/AFL TEAEs DURING THE STUDY

ACORAMIDIS IMPROVED NT-proBNP LEVELS AT MONTH 30 VS PLACEBO, REGARDLESS OF AF/AFL AT ANY TIME (AT BASELINE OR DURING THE STUDY^a)

CONCLUSIONS

- Absolute proportions of participants with clinically meaningful NT-proBNP improvements at Month 30 were about 15% higher with acoramidis than with placebo, regardless of baseline AF status or AF/AFL during the study
- > Findings were consistent across NT-proBNP reduction thresholds (> 700 pg/mL and > 30%, OR > 300 pg/mL and > 30%)
- Limitations of these analyses are that participants were not randomized by their AF status at baseline and that AF occurrence was not evaluated as a time-dependent variable
- Durability and long-term clinical effects of acoramidis are being assessed in the ongoing open-label extension study^a