Efficacy outcomes of larotrectinib by prior therapy and performance status in patients with TRK fusion lung cancer

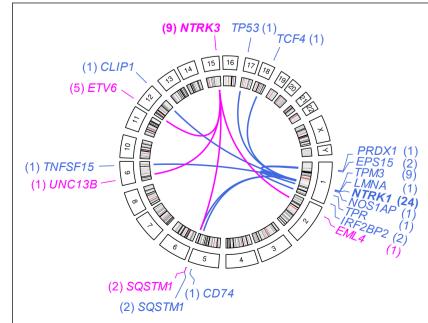
Victor Moreno,¹ Alexander Drilon,² Shivaani Kummar,³ Jessica J. Lin,⁴ Daniel S.W. Tan,⁵ Damian T. Rieke,⁶ Biswajit Dubashi,⁷ Kunhi Parambath Haresh,⁸ Domnita-Ileana Burcoveanu,⁹ Natascha Neu,¹⁰ Chiara Mussi,¹¹ Changsong Qi¹² ¹START MADRID-FJD, Hospital Fundación Jiménez Díaz, Madrid, Spain; ²Memorial Sloan Kettering Cancer Center & Weill Cornell Medical College, New York, NY, USA; ⁴Department of Medicine, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA; ⁵Division of Medical Oncology, National Cancer Centre Singapore, India; ⁸All India Institute of Medical Sciences, New Delhi, India; ⁹Bayer HealthCare Pharmaceuticals, Inc., Basel, Switzerland; ¹⁰Chrestos GmbH, Essen, Germany; ¹¹Bayer S.p.A., Milan, Italy; ¹²State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China.

BACKGROUND

- NTRK gene fusions are oncogenic drivers in various cancers, including lung cancer.
- NTRK gene fusion frequency in non-small cell lung cancer is estimated to be ~0.2%.²⁻⁴
- · Larotrectinib is the first-in-class, highly selective, central nervous system (CNS)-active TRK inhibitor approved for tumour-agnostic use in adult and paediatric patients with TRK fusion cancer based on objective response rate in patients with various tumour types.^{5,6}
- Here, we report updated data in patients with TRK fusion lung cancer, stratified by prior lines of systemic therapy and baseline Eastern Cooperative Oncology Group performance status (ECOG PS).

METHODS

- Patients with TRK fusion lung cancer treated with larotrectinib in 2 clinical trials (NCT02122913, NCT02576431 [NAVIGATE]) were included in this analysis.
- *NTRK* gene fusions were determined by local testing before enrolment.
- Larotrectinib was administered at 100 mg twice daily.
- The primary endpoint was overall response rate (ORR) as assessed by an independent review committee (IRC) using Response Evaluation Criteria in Solid Tumours v1.1.
- The secondary endpoints included duration of response (DoR), progression-free survival (PFS), overall survival (OS) and safety.
- The data cut-off for this analysis was 20 July 2023.


RESULTS

- A total of 32 patients with TRK fusion lung cancer were enrolled, including 12 patients with CNS metastases at baseline (Table 1).
- NTRK gene fusions were identified by next-generation sequencing (NGS) in all patients.
- There were 16 unique gene fusions, with *TPM3*::*NTRK1* being the most common (n=9; 28%; Figure 1).
- · Patients had received a median of 2 prior lines of systemic therapies; 1 patient was treatment-naïve (Table 1).
- Thirteen patients had received prior immunotherapy.

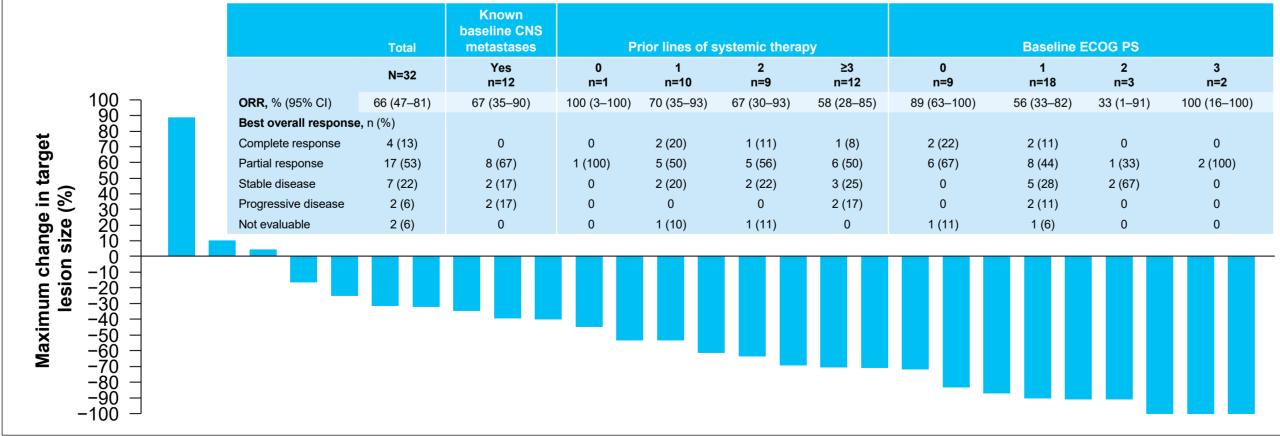
Efficacy

- Tumour response and best ORR are shown in Figure 2.
- Treatment duration ranged from 2 to 75+ months (Figure 3).
- The median time to response was 1.8 months (range 1.5–7.3).
- Median DoR, PFS and OS are reported in Figure 4.

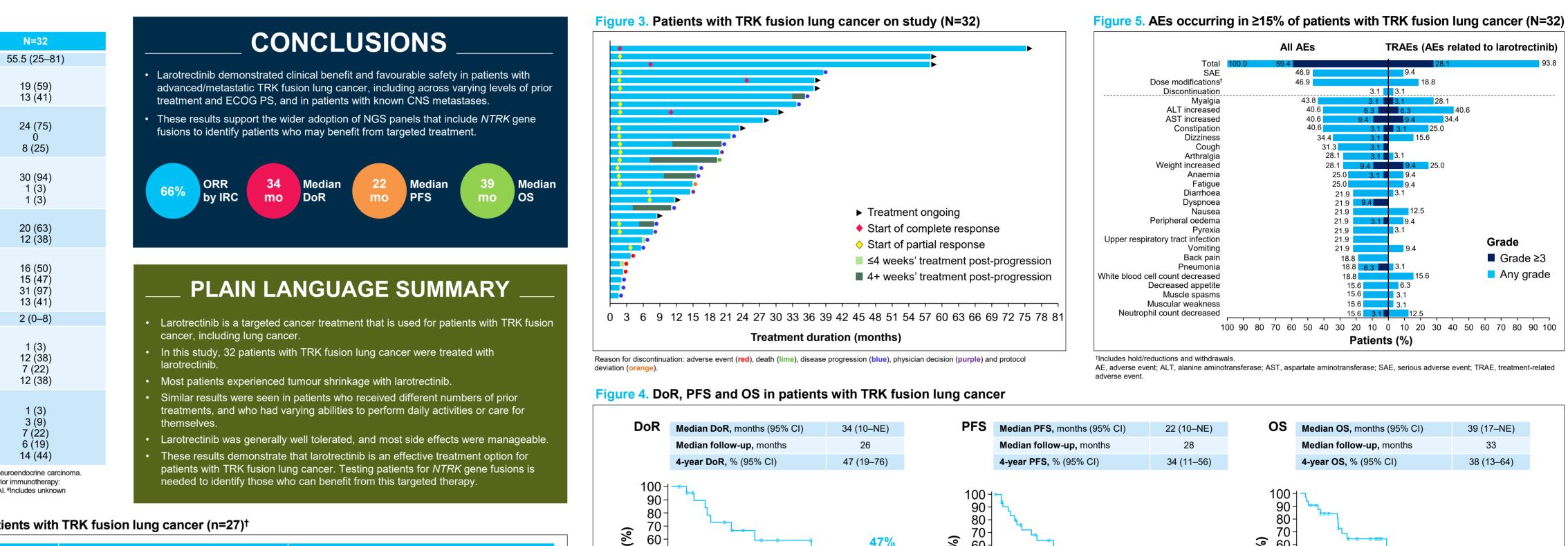
Figure 1. NTRK fusion partner distribution

One patient had 2 unique gene fusions: TCF4::NTRK1 and UNC13B::NTRK3. The number of patients with each fusion is indicated in the parentheses Generated using Circos: R Core Team (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

- Treatment-related adverse events (TRAEs) were predominantly Grade 1/2 (Figure 5).
- Grade 3/4 TRAEs were reported in 9 (28%) patients (increased alanine aminotransferase [ALT]. aspartate aminotransferase [AST], transaminases, and gamma-glutamyltransferase [GGT], myalgia, constipation, increased weight, hypersensitivity, hyponatraemia and skin swelling).
- One patient discontinued treatment due to TRAEs (increased ALT, AST and GGT).


Table 1. Baseline characteristics

Characteristic	
Age, median (range), years	
Sex, n (%) Female Male	
NTRK gene fusion, n (%) NTRK1 NTRK2 NTRK3	
Tumour histology, n (%) Adenocarcinoma Atypical carcinoid Neuroendocrine [†]	
Known CNS metastases at baseline, n (%) No Yes	
Prior therapies, n (%) [‡] Surgery Radiotherapy Systemic therapy [§] Immunotherapy [∥]	
Prior systemic therapies, median (range)§	
Prior systemic therapies, n (%) [§] 0 1 2 ≥3	
Best response to prior systemic therapy, n (%) ^{,¶} Complete response Partial response	


Stable disease Progressive disease

[†]This patient was originally diagnosed with a small cell lung cancer that was subsequently assessed as neuroendocrine carcinoma. Patients may be counted in more than 1 row. §Excludes patients that received RAI. IBest response to prior immunotherapy: 1 complete response, 1 stable disease, 4 progressive disease, 2 not evaluable, 5 unknown. ¶Includes RAI. #Includes unknown and not evaluable. CNS, central nervous system; RAI. radioactive iodine.

Figure 2. Maximum change in target lesion size in patients with TRK fusion lung cancer (n=27)[†]

Five patients had no measurable lesions or had missing data as assessed by IRC CI, confidence interval; CNS, central nervous system; ECOG PS, Eastern Cooperative Oncology Group performance status; IRC, independent review committee; ORR, overall response rate.

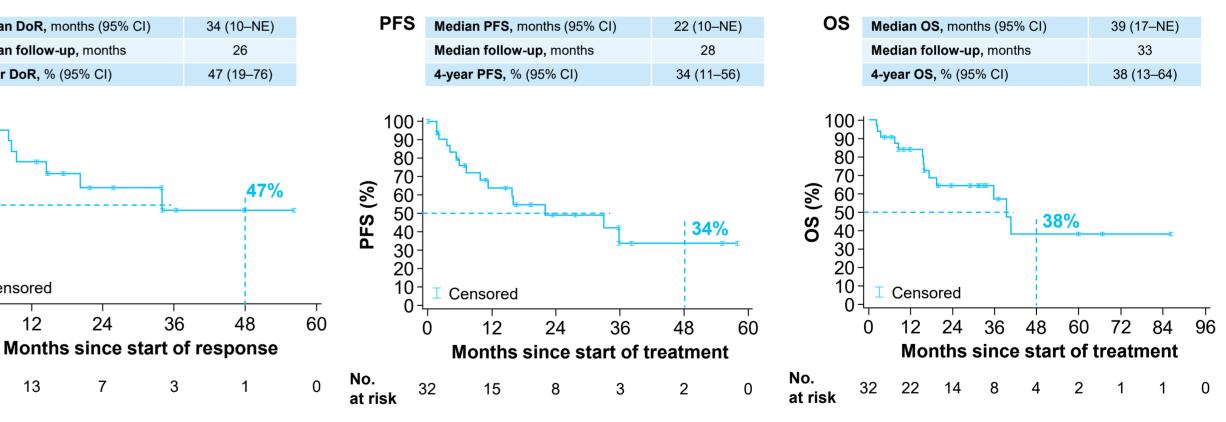
Known baseline CNS metastases	Prior lines of systemic therapy				Baseline ECOG PS			
Yes n=12	0 n=1	1 n=10	2 n=9	≥3 n=12	0 n=9	1 n=18	2 n=3	3 n=2
67 (35–90)	100 (3–100)	70 (35–93)	67 (30–93)	58 (28–85)	89 (63–100)	56 (33–82)	33 (1–91)	100 (16–100)
0	0	2 (20)	1 (11)	1 (8)	2 (22)	2 (11)	0	0
8 (67)	1 (100)	5 (50)	5 (56)	6 (50)	6 (67)	8 (44)	1 (33)	2 (100)
2 (17)	0	2 (20)	2 (22)	3 (25)	0	5 (28)	2 (67)	0
2 (17)	0	0	0	2 (17)	0	2 (11)	0	0
0	0	1 (10)	1 (11)	0	1 (11)	1 (6)	0	0

2. Forsythe A, et al. Ther Adv Med Oncol. 2020;12:1758835920975613.

- 3. Westphalen CB, et al. NPJ Precis Oncol. 2021;5:69.
- 4. O'Haire S, et al. Sci Rep. 2023;13:4116.

Acknowledgemer

DoR


at risk

References

40

Censore

12

CI, confidence interval; DoR, duration of response; NE, not estimable; OS, overall survival; PFS, progression-free survival.

1. Amatu A, et al. Ann Oncol. 2019;30:viii5–viii15. 5. Bayer. VITRAKVI US PI. 2023. Available at:

https://labeling.bayerhealthcare.com/html/products/pi/vitrakvi PI.pdf. Accessed 11 February 2025.

6. Bayer. VITRAKVI SmPC. 2023. Available at

https://www.ema.europa.eu/en/documents/product-information/vitrakviepar-product-information_en.pdf. Accessed 11 February 2025.

Disclosures

These studies were funded by Bayer Healthcare Pharmaceuticals, Inc. and Loxo Oncology, Inc., a wholly owned subsidiary of Eli Lilly and Company. The presenting author discloses consulting fees from Bayer, Bristol Myers Squibb Janssen and Pieris; received travel support from Bayer, Bristol Myers Squibb and Regeneron/Sanofi; participated in speaker bureaus for Bayer, Bristol Myers Squibb and Nanobiotix; and received educational grants from Medscape/Bayer.

Copies of this e-poster obtained through QR. AR and/or text key codes are for personal use only and may not be reproduced without written permission of

79P